Changes in reflectance anisotropy of wheat crop during different phenophases

Open access

Abstract

The canopy structure of wheat changes significantly with growth stages and leads to changes in reflectance anisotropy. Bidirectional reflectance distribution function characterises the reflectance anisotropy of the targets, which can be approximated. Spectrodirectional reflectance measurements on wheat crop were acquired using a field goniometer system. The bidirectional reflectance spectra were acquired at 54 view angles to cover the hemispheric span up to 60° view zenith. The observations were made during early growth stages till maturity of the crop. The anisotropy was not constant for all wavelengths and anisotropic factors clearly revealed spectral dependence, which was more pronounced in near principal plane. In near infrared, wheat canopy expressed less reflectance anisotropy because of higher multiple scattering. The broad hotspot signature was noticeable in reflectance of canopy whenever view and solar angles were close. Distinct changes in bidirectional reflectance distribution function were observed during booting to flowering stages as the canopy achieves more uniformity, height and head emergence. The function clearly reveals bowl shape during heading to early milking growth stages of the crop. Late growth stages show less prominent gap and shadow effects. Anisotropy index revealed that wheat exhibits changes in reflectance anisotropy with phenological development and with spectral bands.

Beisl U., 2001. Correction of bidirectional effects in imaging spectrometer data. Ph.D. Thesis. Remote Sensing Series, 37, RSL, University of Zurich, Switzerland.

Bourgeois C.S., Ohmura A., Schroff K., Frei H.J., and Calanca P., 2006. IAC ETH Goniospectrometer: A tool for hyperspectral HDRF measurements. J. Atmosphere Oceanic Technol., 23(4):573-584. DOI: 10.1175/JTECH1870.1

Camacho De-Coca F., Gilaber, M.A., and Melia J., 2001. Bidirectional reflectance factor analysis from field radiometry and the HyMap data. Proc. Final Results Workshop on DAISEX (Digital AIrborne Spectrometer EXperiment), ESA SP-499, ESTEC, March 15-16, Nordwijk, European Space Agency Paris, France.

Coulson K.L., 1966. Effects of reflection properties of natural surfaces in aerial reconnaissance. Applied Optics, 5, 905-917. DOI: 10.1364/AO.5.000905

Deering D.W. and Eck T.F., 1987. Atmospheric optical depth effects on angular anisotropy of plant canopy reflectance. Int. J. Remote Sensing, 8, 893-916. DOI:10.1080/ 01431168708948697

Feingersh T., Ben-Dor E., and Filin S., 2010. Correction of reflectance anisotropy: a multi-sensor approach. Int. J. Remote Sensing, 31(1), 49-74. DOI:10.1080/01431160902882520

Feingersh T., Dorigo W., Richter R., and Ben-Dor E., 2005. A new model-driven correction factor for BRDF effects in HRS data. 4th EARSeL Workshop on Imaging Spectroscopy, (Eds B. Zagajewski and M. Sobczak), April 27-29, Warsaw, Poland.

Gutman G., 1987. The derivation of vegetation indices from AVHRR data. Int. J. Remote Sensing, 8, 1235-1243. DOI:10.1080/01431168708954768

Jackson R.D., Teillet P.M., and Slater P.N., 1990. Bidirectional measurements of surface reflectance for view angle corrections of oblique imagery. Remote Sensing of Environment. 32, 189-202. DOI: 10.1016/0034-4257(90)90017-G

Jensen J.R. and Schill S.R., 2000. Bidirectional reflectance distribution function (BRDF) characteristics of smooth cordgrass (Spartina alterniflora) obtained using a sandmeier field goniometer. Geocarto Int., 15, 21-28. DOI: 10.1080/ 10106049908542149

Landis B. and Aber J.S., 2007. Low-cost field goniometer for multiangular reflectance measurements. Emporia State Research Studies, 44(1), 1-6.

Lobell D.B., Asner G.P., Law B.E., and Treuhaft R.N., 2002. View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS. Int. J. Remote Sensing, 23(11), 2247-2262. DOI: 10.1080/ 01431160110075613

Lord D., Desjardins R.L., and Dube P.A., 1985. Influence of wind on crop canopy reflectance measurements. Remote Sensing Environ., 18, 113-123. DOI:10.1016/0034-4257 (85)90042-2

Lucht W. and Roujean J.L., 2000. Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations. Remote Sensing Reviews, 18, 343-379. DOI: 10.1080/02757250009532395

Luo Y., Trishchenko A.P., Latifovic R., and Li Z., 2005. Surface bidirectional reflectance and albedo properties derived using a land cover-based approach with Moderate Resolution Imaging Spectroradiometer observations, J. Geophysical Res., 110, D01106, DOI:10.1029/2004JD004741.

Middleton E.M., 1992. Quantifying reflectance anisotropy of photosynthetically active radiation in grasslands. J. Geophysical Res., 97(D17), 18,935-18,946. DOI: 10.1029/ 92JD00879

Ni W., Woodcock C.E., and Jupp D.L.B., 1999. Variance in bidirectional reflectance over discontinuous plant canopies, Remote Sensing Environ., 69(1), 1-15. DOI: 10.1016/ S0034-4257(98)00125-4

Nicodemus F.E., Richmond J.C., Hsia J.J. Ginsberg I., and Limperis T., 1977. Geometric considerations, and nomenclature for reflectance. U.S. Dept. of Commerce, NBS Monograph, Washington, DC, USA.

Roujean J.L., Leroy M., Deschamps P.Y., Podaire A., and Deschamps P.Y., 1992. Evidence of surface reflectance bidirectional effects from a NOAA/AVHRR multitemporal data set. Int. J. Remote Sensing, 13, 685-698. DOI: 10.1080/01431169208904146

Sandmeier S.R., 2000. Acquisition of bidirectional reflectance factor data with field goniometers. Remote Sensing Environ., 73, 257-269. DOI:10.1016/S0034-4257(00)00102-4

Sandmeier S.R. and Deering D.W., 1999. A new approach to derive canopy structure information for boreal forests using spectral BRDF data, Geoscience and Remote Sensing Symp., IGARSS ‘99 Proc. IEEE Int., Hamburg, DOI: 10.1109/IGARSS.1999.773516

Sandmeier S.R. and Itten K.I., 1999. A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data. IEEE Trans. Geoscience and Remote Sensing, 37(2), 978-986. DOI: 10.1109/36.752216

Sandmeier S., Muller C., Hosgood B., and Andreoli G.,1998a. Physical mechanisms in hyperspectral BRDF data of grass and watercress. Remote Sensing of Environ., 66, 222-233. DOI:10.1016/S0034-4257(98)00060-1

Sandmeier S., Muller C., Hosgood B., and Andreoli G., 1998b. Sensitivity analysis and quality assessment of laboratory BRDF data. Remote Sensing Environ., 64, 176-191. DOI:10.1016/S0034-4257(97)00178-8

Schopfer J., Dangel S., Kneubühler M., and Itten K.I., 2008. The improved dual-view field goniometer system FIGOS. Sensors, 8, 5120-5140. DOI:10.3390/s8085120

Sridhar V.N., Chaudhari K.N., Tripathi R., Chaurasia S., Patel N.K., Lunagaria M., Guled P., and Pandey V., 2009. Multi-Angular and Temporal Spectral Signature Study of Wheat (Triticum aestivum L.) Using a Field Goniometer. SAC/RESA/AFEG/CMD/SN/06/2009, ISRO, Ahmedabad, India.

Susaki J., Hara K., Kajiwara K., and Honda Y., 2004. Robust estimation of BRDF model parameters. Remote Sensing Environ., 89(1), 63-71. DOI:10.1016/j.rse.2003.10.004

Van Beek J., Tits L., Somers B., Deckers T., Janssens P., and Coppin P., 2016. Viewing geometry sensitivity of commonly used vegetation indices towards the estimation of biophysical variables in orchards. J. Imaging, 2, 15, DOI:10.3390/jimaging2020015

Zhang Q., Cheng Y.-B., Lyapustin A.I., Wang Y., Xiao X., Suyker A., Verma S., Tan B., and Middleton E.M., 2014. Estimation of crop gross primary production (GPP): I. Impact of MODIS observation footprint area and impact of vegetation BRDF characteristics. Agric. Forest Meteorol., 191, 51-63. DOI: 10.1016/j.agrformet.2014.02.002

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2018: 1.44

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.891

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 145 104 8
PDF Downloads 83 72 3