Estimation of daily average downward shortwave radiation from MODIS data using principal components regression method: Fars province case study

Open access


Downward shortwave radiation is a key quantity in the land-atmosphere interaction. Since the moderate resolution imaging spectroradiometer data has a coarse temporal resolution, which is not suitable for estimating daily average radiation, many efforts have been undertaken to estimate instantaneous solar radiation using moderate resolution imaging spectroradiometer data. In this study, the principal components analysis technique was applied to capture the information of moderate resolution imaging spectroradiometer bands, extraterrestrial radiation, aerosol optical depth, and atmospheric water vapour. A regression model based on the principal components was used to estimate daily average shortwave radiation for ten synoptic stations in the Fars province, Iran, for the period 2009-2012. The Durbin-Watson statistic and autocorrelation function of the residuals of the fitted principal components regression model indicated that the residuals were serially independent. The results indicated that the fitted principal components regression models accounted for about 86-96% of total variance of the observed shortwave radiation values and the root mean square error was about 0.9-2.04 MJ m−2 d−1. Also, the results indicated that the model accuracy decreased as the aerosol optical depth increased and extraterrestrial radiation was the most important predictor variable among all.

Adeboye O.B., Osunbitan J.A., Adekalu K.O., and Okunade D.A., 2009. Evaluation of FAO-56 Penman-Monteith and temperature based models in estimating reference evapotranspiration using complete and limited data, application to Nigeria. Agric. Eng. Int.: CIGR J., Manuscript 1291, 11, October, 2009.

Bisht G., Venturini V., Islam S., and Jiang L., 2005. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sensing Environ., 97, 52-67.

Change C., 2001. The scientific basis, intergovernmental panel on climate change (Eds J.T. Houghton, Y. Ding, D.J. Griggs, et al.). Cambridge University Press, Cambridge, U.K.

Houghton J.T., Ding Y., Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., and Johnson C., 2001. Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, U.K.

Huang G., Liu S., and Liang S., 2012. Estimation of net surface shortwave radiation from MODIS data. Int. J. Remote Sensing, 33, 804-825.

Irmak S. and Allen R.G., 2005. Closure on Predicting daily net radiation using minimum climatological data (Eds S. Irmak, A. Irmak, J.W. Jones, T.A. Howell, J.M. Jacobs, R.G. Allen and G. Hoogenboom). J. Irrigation Drainage Eng., 131, 389-390.

Justice C., Eck T., Tanré D., and Holben B., 1991. The effect of water vapour on the normalized difference vegetation index derived for the Sahelian region from NOAA AVHRR data. Int. J. Remote Sensing, 12, 1165-1187.

Kaplanis S. and Kaplani E., 2007. A model to predict expected mean and stochastic hourly global solar radiation I (h; nj) values. Renewable Energy, 32, 1414-1425.

Kim H.-Y. and Liang S., 2010. Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data. Remote Sensing Environ., 114, 2393-2402.

Levy R., Mattoo S., Munchak L., Remer L., Sayer A., and Hsu N., 2013. The collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. Discuss., 6, 159-259.

López G. and Batlles F.J., 2014. Estimating Solar Radiation from MODIS Data. Energy Procedia, 49, 2362-2369.

Mueller R., Dagestad K.-F., Ineichen P., Schroedter-Homscheidt M., Cros S., Dumortier D., Kuhlemann R., Olseth J., Piernavieja G., and Reise C., 2004. Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module. Remote Sensing Environ., 91, 160-174.

Phakamas N., Jintrawet A., Patanothai A., Sringam P., and Hoogenboom G., 2013. Estimation of solar radiation based on air temperature and application with the DSSAT v4. 5 peanut and rice simulation models in Thailand. Agric. Forest Meteorol., 180, 182-193.

Qin J., Chen Z., Yang K., Liang S., and Tang W., 2011. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products. Applied Energy, 88, 2480-2489.

Qu J.J., Gao W., Kafatos M., Murphy R.E., and Salomonson V.V., 2006. Earth Science Satellite Remote Sensing. Science Instruments, 1, 408.

Rahimikhoob A., 2010. Estimating global solar radiation using artificial neural network and air temperature data in a semi-arid environment. Renewable Energy, 35, 2131-2135.

Samani Z., Bawazir A.S., Bleiweiss M., Skaggs R., and Tran V.D., 2007. Estimating daily net radiation over vegetation canopy through remote sensing and climatic data. J. Irrigation Drainage Eng., 133(4), 291-297.

Schowengerdt R.A., 2006. Remote sensing: models and methods for image processing. Academic Press, San Diego, California.

Shirvani A., Moradi F., and Moosavi A.A., 2015. Time series modelling of increased soil temperature anomalies during long period. Int. Agrophys., 29, 509-515.

Su H., McCabe M., Wood E., Su Z., and Prueger J., 2005. Modeling evapotranspiration during SMACEX: Comparing two approaches for local-and regional-scale prediction. J. Hydrometeorology, 6, 910-922.

Tang B., Li Z.-L., and Zhang R., 2006. A direct method for estimating net surface shortwave radiation from MODIS data. Remote Sensing Environ., 103, 115-126.

Wang D., Liang S., He T., Cao Y., and Jiang B., 2015. Surface Shortwave Net Radiation Estimation from FengYun-3 MERSI Data. Remote Sensing, 7, 6224-6239.

Wilks D.S., 2011. Statistical methods in the atmospheric sciences. Academic Press, San Diego, California.

Yang K., Huang G., and Tamai N., 2001. A hybrid model for estimating global solar radiation. Solar Energy, 70, 13-22.

Zhang Y., Li X., and Bai Y., 2015. An integrated approach to estimate shortwave solar radiation on clear-sky days in rugged terrain using MODIS atmospheric products. Solar Energy, 113, 347-357.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2018: 1.44

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.891

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 134 12
PDF Downloads 80 71 4