Ground penetrating radar for underground sensing in agriculture: a review

Open access


Belowground properties strongly affect agricultural productivity. Traditional methods for quantifying belowground properties are destructive, labor-intensive and pointbased. Ground penetrating radar can provide non-invasive, areal, and repeatable underground measurements. This article reviews the application of ground penetrating radar for soil and root measurements and discusses potential approaches to overcome challenges facing ground penetrating radar-based sensing in agriculture, especially for soil physical characteristics and crop root measurements. Though advanced data-analysis has been developed for ground penetrating radar-based sensing of soil moisture and soil clay content in civil engineering and geosciences, it has not been used widely in agricultural research. Also, past studies using ground penetrating radar in root research have been focused mainly on coarse root measurement. Currently, it is difficult to measure individual crop roots directly using ground penetrating radar, but it is possible to sense root cohorts within a soil volume grid as a functional constituent modifying bulk soil dielectric permittivity. Alternatively, ground penetrating radarbased sensing of soil water content, soil nutrition and texture can be utilized to inversely estimate root development by coupling soil water flow modeling with the seasonality of plant root growth patterns. Further benefits of ground penetrating radar applications in agriculture rely on the knowledge, discovery, and integration among differing disciplines adapted to research in agricultural management.

Amato M. and Ritchie J.T., 2002. Spatial distribution of roots and water uptake of maize (Zea mays L.) as affected by soil structure. Crop Sci., 42, 773-780.

Amundson R., Richter D.D., Humphreys G.S., Jobbágy E.G., and Gaillardet J., 2007. Coupling between biota and earth materials in the critical zone. Elements, 3, 327-332.

Annan A., 1992. Ground penetrating radar workshop notes. Sensors and Software Inc., Mississauga, Ontario, Canada.

Baili J., Lahouar S., Hergli M., Al-Qadi I.L., and Besbes K., 2009. GPR signal de-noising by discrete wavelet transform. NDT E Int., 42, 696-703.

Baker J. and Allmaras R., 1990. System for automating and multiplexing soil moisture measurement by time-domain reflectometry. Soil Sci. Soc. Am. J., 54, 1-6.

Barton C.V. and Montagu K.D., 2004. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiol., 24, 1323-1331.

Benedetto A., 2010. Water content evaluation in unsaturated soil using GPR signal analysis in the frequency domain. J. Appl. Geophys., 71, 26-35.

Benedetto A. and Benedetto F., 2002. GPR experimental evaluation of subgrade soil characteristics for rehabilitation of roads. Proc. 9th Int. Conf. Ground Penetrating Radar (GPR2002), April 15, Santa Barbara, CA, USA, Int. Society for Optics and Photonics, 4758, 708-714.

Benedetto A. and Pajewski L., (Eds) 2015. Civil Engineering Applications of Ground Penetrating Radar. Springer International Publishing, Switzerland.

Benedetto F. and Tosti F., 2013. GPR spectral analysis for clay content evaluation by the frequency shift method. J. Appl. Geophys., 97, 89-96.

Blum A., 2005. Drought resistance, water-use efficiency, and yield potential - are they compatible, dissonant, or mutually exclusive? Crop Pasture Sci., 56, 1159-1168.

Borden K.A., Isaac M.E., Thevathasan N.V., Gordon A.M., and Thomas S.C., 2014. Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system. Agroforest. Syst., 88, 657-669.

Butnor J., Roth B., and Johnsen K., 2005. Feasibility of using ground-penetrating radar to quantify root mass in Florida’s intensively managed pine plantations. Forest Biology Research Cooperative, 38, 13 pages. University of Florida, Gainesville, FL, USA.

Butnor J.R., Doolittle J., Johnsen K.H., Samuelson L., Stokes T., and Kress L., 2003. Utility of ground-penetrating radar as a root biomass survey tool in forest systems. Soil Sci. Soc. Am. J., 67, 1607-1615.

Butnor J.R., Doolittle J., Kress L., Cohen S., and Johnsen K.H., 2001. Use of ground-penetrating radar to study tree roots in the southeastern United States. Tree Physiol., 21, 1269-1278.

Butnor J.R., Samuelson L.J., Stokes T.A., Johnsen K.H., Anderson P.H., and González-Benecke C.A., 2016. Surface-based GPR underestimates below-stump root biomass. Plant Soil, 402, 47-62.

Carrière S.D., Chalikakis K., Sénéchal G., Danquigny C., and Emblanch C., 2013. Combining electrical resistivity tomography and ground penetrating radar to study geological structuring of karst unsaturated zone. J. Appl. Geophys., 94, 31-41.

Cassidy N.J., 2009. Ground penetrating radar data processing, modelling and analysis. In: Ground Penetrating Radar Theory and Applications (Ed. H.M. Jol). Elsevier, Amsterdam, The Netherlands.

Castro A.C.M., Meixedo J.P., Santos J.M., Góis J., Bento- Gonçalves A., Vieira A., and Lourenço L., 2015. On sampling collection procedure effectiveness for forest soil characterization. Flamma, 6, 98-100.

Chlaib H.K., Mahdi H., Al-Shukri H., Su M.M., Catakli A., and Abd N., 2014. Using ground penetrating radar in levee assessment to detect small scale animal burrows. J. Appl. Geophys., 103, 121-131.

Clark R.T., MacCurdy R.B., Jung J.K., Shaff J.E., McCouch S.R., Aneshansley D.J., and Kochian L.V., 2011. Threedimensional root phenotyping with a novel imaging and software platform. Plant Physiol., 156, 455-465.

Collins M., Schellentrager G., Doolittle J., and Shih S., 1986. Using ground-penetrating radar to study changes in soil map unit composition in selected Histosols. Soil Sci. Soc. Am. J., 50, 408-412.

Collins M.E. and Doolittle J.A., 1987. Using ground-penetrating radar to study soil microvariability. Soil Sci. Soc. Am. J., 51, 491-493.

Comas X., Slater L., and Reeve A., 2005. Spatial variability in biogenic gas accumulations in peat soils is revealed by ground penetrating radar (GPR). Geophysical Research Letters, 32, L08401.

Conyers L.B., 2013. Ground-penetrating radar for archaeology. Rowman and Littlefield Publishers, Alta Mira Press, Latham, MD, USA.

Cui F., Wu Z.Y., Wang L., and Wu Y.B., 2015. Application of the Ground Penetrating Radar ARMA power spectrum estimation method to detect moisture content and compactness values in sandy loam. J. Appl. Geophys., 120, 26-35.

Cui X., Chen J., Shen J., Cao X., Chen X., and Zhu X., 2011. Modeling tree root diameter and biomass by ground-penetrating radar. Sci. China Earth Sci., 54, 711-719.

Daniels D.J., 2004. Ground Penetrating Radar. The Institution of Engineering and Technology, London, UK.

Danjon F. and Reubens B., 2008. Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil, 303, 1-34.

Davis J. and Annan A., 1989. Ground-penetrating radar for highresolution mapping of soil and rock stratigraphy. Geophys. Prospect., 37, 531-551.

Dean T., Bell J., and Baty A., 1987. Soil moisture measurement by an improved capacitance technique, Part I. Sensor design and performance. J. Hydrol., 93, 67-78.

Dong X., Nyren P., Patton B., Nyren A., Richardson J., and Maresca T., 2008. Wavelets for agriculture and biology: A tutorial with applications and outlook. BioScience, 58, 445-453.

Dong X., Patton B.D., Nyren A.C., Nyren P.E., and Prunty L.D., 2010. Quantifying root water extraction by rangeland plants through soil water modeling. Plant Soil, 335, 181-198.

Doolittle J.A., 1987. Using ground-penetrating radar to increase the quality and efficiency of soil surveys 1. Soil Survey Techniques. Soil Sci. Soc. America, Madison, WI, USA.

Doolittle J.A. and Brevik E.C., 2014. The use of electromagnetic induction techniques in soils studies. Geoderma, 223-225, 33-45.

Doolittle J.A. and Collins M.E., 1995. Use of soil information to determine application of ground penetrating radar. J. Appl. Geophys., 33, 101-108.

Doolittle J.A., Minzenmayer F.E., Waltman S.W., and Benham E.C., 2002. Ground-penetrating radar soil suitability map of the conterminous United States (Eds S.K. Koppenjan, L. Hua). SPIE, 4158, 7-12, April 30-May 2, Santa Barbara, CA, USA.

Doolittle J.A., Minzenmayer F.E., Waltman S.W., Benham E.C., Tuttle J.W., and Peaslee S.D., 2007. Groundpenetrating radar soil suitability map of the conterminous United States. Geoderma, 141, 416-421.

Eigenberg R.A., Doran J.W., Nienaber J.A., Ferguson R.B., and Woodbury B.L., 2002. Electrical conductivity monitoring of soil condition and available N with animal manure and a cover crop. Agricult. Ecosyst. Environ., 88, 183-193.

Feddes R.A., Kowalik P.J., and Zaradny H., 1978. Simulation of field water use and crop yield. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.

Freeland R., Odhiambo L., Tyner J., Ammons J., and Wright W., 2006. Nonintrusive mapping of near-surface preferential flow. Appl. Eng. Agric., 22, 315-319.

Frevert R.K. and Kirkham D., 1949. A field method for measuring the permeability of soil below a water table. Proc. 28th Annual Meeting, Highway Research Board, Washington, DC, December 7-10, 1948, 28, 433-442.

Galagedara L., Parkin G., Redman J., Von Bertoldi P., and Endres A., 2005. Field studies of the GPR ground wave method for estimating soil water content during irrigation and drainage. J. Hydrol., 301, 182-197.

Giannopoulos A., 2005. Modelling ground penetrating radar by GprMax. Constr. Build. Mater., 19, 755-762.

Gish T., Walthall C., Daughtry C., and Kung K.J., 2005. Using soil moisture and spatial yield patterns to identify subsurface flow pathways. J. Environ. Qual., 34, 274-286.

Goodman D., 1994. Ground-penetrating radar simulation in engineering and archaeology. Geophys., 59, 224-232.

Goodman D., Nishimura Y., Hongo H., and Higashi N., 2006. Corrections for topography and the tilt of ground-penetrating radar antennae. Archaeol. Prospect., 13, 157-161.

Grote K., Hubbard S., and Rubin Y., 2003. Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques. Wat. Resources Res., 39, 1321-1335.

Guo L., Chen J., Cui X., Fan B., and Lin H., 2013a. Application of ground penetrating radar for coarse root detection and quantification: a review. Plant Soil, 362, 1-23.

Guo L., Lin H., Fan B., Cui X., and Chen J., 2013b. Forward simulation of root’s ground penetrating radar signal: simulator development and validation. Plant Soil, 372, 487-505.

Guo L., Lin H., Fan B., Cui X., and Chen J., 2013c. Impact of root water content on root biomass estimation using ground penetrating radar: evidence from forward simulations and field controlled experiments. Plant Soil, 371, 503-520.

Guo L., Chen J., and Lin H., 2014. Subsurface lateral preferential flow network revealed by time-lapse ground-penetrating radar in a hillslope. Water Resour. Res., 50, 9127-9147.

Guo L., Wu Y., Chen J., Hirano Y., Tanikawa T., Li W., and Cui X., 2015. Calibrating the impact of root orientation on root quantification using ground-penetrating radar. Plant Soil, 395, 289-305.

Hagrey S.A. and Müller C., 2000. GPR study of pore water content and salinity in sand. Geophys. Prospect., 48, 63-85.

Hansson A.C. and Andrén O., 1987. Root dynamics in barley, lucerne and meadow fescue investigated with a mini-rhizotron technique. Plant Soil, 103, 33-38.

Herrero J., Ba A.A., and Aragüés R., 2003. Soil salinity and its distribution determined by soil sampling and electromagnetic techniques. Soil Use Manag., 19, 119-126.

Hirano Y., Dannoura M., Aono K., Igarashi T., Ishii M., Yamase K., Makita N., and Kanazawa Y., 2009. Limiting factors in the detection of tree roots using ground-penetrating radar. Plant Soil, 319, 15-24.

Hirano Y., Yamamoto R., Dannoura M., Aono K., Igarashi T., Ishii M., Yamase K., Makita N., and Kanazawa Y., 2012. Detection frequency of Pinus thunbergii roots by groundpenetrating radar is related to root biomass. Plant Soil, 360, 363-373.

Holloway-Phillips M. and Brodribb T.J., 2011. Minimum hydraulic safety leads to maximum water-use efficiency in a forage grass. Plant Cell Environ., 34, 302-313.

Hopmans J.W. and Bristow K.L., 2002. Current capabilities and future needs of root water and nutrient uptake modeling. Adv. Agron., 77, 103-183.

Hruska J., Čermák J., and Šustek S., 1999. Mapping tree root systems with ground-penetrating radar. Tree Physiol., 19, 125-130.

Huisman J., Hubbard S., Redman J., and Annan A., 2003. Measuring soil water content with ground penetrating radar. Vadose Zone J., 2, 476-491.

Huisman J., Snepvangers J., Bouten W., and Heuvelink G., 2002. Mapping spatial variation in surface soil water content: comparison of ground-penetrating radar and time domain reflectometry. J. Hydrol., 269, 194-207.

Jackson T. and Le Vine D.E., 1996. Mapping surface soil moisture using an aircraft-based passive microwave instrument: Algorithm and example. J. Hydrol., 184, 85-99.

Johnson R.W., Glasscum R., and Wojtasinski R., 1982. Application of ground penetrating radar to soil survey. Soil Horizons, 23, 17-25.

Jol H.M., 2008. Ground penetrating radar theory and applications. Elsevier, Amsterdam, The Netherlands.

Jol H.M., Smith D.G., and Meyers R.A., 1996. Digital ground penetrating radar (GPR): A new geophysical tool for coastal barrier research (examples from the Atlantic, Gulf and Pacific coasts, USA). J. Coastal Res., 12, 960-968.

Jonard F., Mahmoudzadeh M., Roisin C., Weihermüller L., André F., Minet J., Vereecken H., and Lambot S., 2013. Characterization of tillage effects on the spatial variation of soil properties using ground-penetrating radar and electromagnetic induction. Geoderma, 207, 310-322.

Lambot S., Rhebergen J., Van den Bosch I., Slob E., and Vanclooster M., 2004. Measuring the soil water content profile of a sandy soil with an off-ground monostatic ground penetrating radar. Vadose Zone J., 3, 1063-1071.

Liu X., Feike T., Shao L., Sun H., Chen S., and Zhang X., 2016. Effects of different irrigation regimes on soil compaction in a winter wheat-summer maize cropping system in the North China Plain. Catena, 137, 70-76.

Liu X., Zhang X., Chen S., Sun H., and Shao L., 2015. Subsoil compaction and irrigation regimes affect the root-shoot relation and grain yield of winter wheat. Agricult. Water Manag., 154, 59-67.

Lorenzo H., Perez-Gracia V., Novo A., and Armesto J., 2010. Forestry applications of ground-penetrating radar. Forest Syst., 19, 5-17.

Mahmoudzadeh M., Francés A., Lubczynski M., and Lambot S., 2012. Using ground penetrating radar to investigate the water table depth in weathered granites-Sardon case study, Spain. J. Appl. Geophys., 79, 17-26.

Maierhofer C., 2003. Nondestructive evaluation of concrete infrastructure with ground penetrating radar. J. Materials Civil Eng., 15, 287-297.

McDonald K.C., Zimmermann R., and Kimball J.S., 2002. Diurnal and spatial variation of xylem dielectric constant in Norway spruce (Picea abies [L.] Karst.) as related to microclimate, xylem sap flow, and xylem chemistry. IEEE Trans. Geosci. Remote Sens., 40, 2063-2082.

Moore G. and Ryder C., 2015. The use of ground-penetrating radar to locate tree roots. Arbori. Urban For., 41, 245-259.

Morison J.I., Baker N.R., Mullineaux P.M., and Davies W.J., 2008. Improving water use in crop production. Philos. Trans. R. Soc. London B: Biol. Sci., 363, 639-658.

Nanni M.R. and Demattê J.A.M., 2006. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci. Soc. Am. J., 70, 393-407.

Novakova E., Karous M., Zajíček A., and Karousova M., 2013. Evaluation of ground penetrating radar and vertical electrical sounding methods to determine soil horizons and bedrock at the locality Dehtáře. Soil Water Res., 8, 105-112.

Olhoeft G.R., 2000. Maximizing the information return from ground penetrating radar. J. Appl. Geophys., 43, 175-187.

Ortuani B., Benedetto A., Giudici M., Mele M., and Tosti F., 2013. A non-invasive approach to monitor variability of soil water content with electromagnetic methods. Proc. Environ. Sci., 19, 446-455.

Oskooi B., Julayusefi M., and Goudarzi A., 2014. GPR noise reduction based on wavelet thresholdings. Arab. J. Geosci., 8, 2937-2951.

Pan X., Wollschläger U., Gerhards H., and Roth K., 2012. Optimization of multi-channel ground-penetrating radar for quantifying field-scale soil water dynamics. J. Appl. Geophys., 82, 101-109.

Pomfret J., 2006. Ground-penetrating radar profile spacing and orientation for subsurface resolution of linear features. Archaeol. Prospect., 13, 151-153.

Qin Y., Chen X., Zhou K., Klenk P., Roth K., and Sun L., 2013. Ground-penetrating radar for monitoring the distribution of near-surface soil water content in the Gurbantünggüt Desert. Environ. Earth Sci., 70, 2883-2893.

Ramirez A., Daily W., Binley A., LaBrecque D., and Roelant D., 1996. Detection of leaks in underground storage tanks using electrical resistance methods. J. Environ. Eng. Geophys., 1, 189-203.

Raper R.L., Asmussen L., and Powell J.B., 1990. Sensing hard pan depth with ground-penetrating radar. Trans. ASAE, 33, 41-46.

Raz-Yaseef N., Koteen L., and Baldocchi D.D., 2013. Coarse root distribution of a semi-arid oak savanna estimated with ground penetrating radar. J. Geophys. Res.- Biogeosci., 118, 135-147.

Rea J. and Knight R., 1998. Geostatistical analysis of groundpenetrating radar data: a means of describing spatial variation in the subsurface. Wat. Resources Res., 34, 329-339.

Rhoades J. and Corwin D., 1981. Determining soil electrical conductivity-depth relations using an inductive electromagnetic soil conductivity meter. Soil Sci. Soc. Am. J., 45, 255-260.

Ritsema C.J. and Dekker L.W., 1998. Three-dimensional patterns of moisture, water repellency, bromide and pH in a sandy soil. J. Contam. Hydrol., 31, 295-313.

Robinson D.A., Campbell C.S., Hopmans J.W., Hornbuckle B.K., Jones S.B., Knight R., Ogden F., Selker J., and Wendroth O., 2008. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J., 7, 358-389.

Saito H. and Kitahara M., 2012. Analysis of changes in soil water content under subsurface drip irrigation using ground penetrating radar. Desert Res., 22, 283-286.

Salucci M., Tenuti L., Nardin C., Oliveri G., Viani F., Rocca P., and Massa A., 2014. Civil Engineering Applications of Ground Penetrating Radar Recent Advances@ the ELEDIA Research Center. EGU General Assembly Conference Abstracts, 16, 1945.

Schmelzbach C., Tronicke J., and Dietrich P., 2012. Highresolution water content estimation from surface-based ground-penetrating radar reflection data by impedance inversion. Wat. Resources Res., 48, W08505.

Seversike T., Sermons S., Sinclair T., Carter T., and Rufty T., 2014. Physiological properties of a drought-resistant wild soybean genotype: Transpiration control with soil drying and expression of root morphology. Plant Soil, 374, 359-370.

Sharma S.P., Leskovar D.I., Crosby K.M., Volder A., and Ibrahim A., 2014. Root growth, yield, and fruit quality responses of reticulatus and inodorus melons (Cucumis melo L.) to deficit subsurface drip irrigation. Agricult. Water Manag., 136, 75-85.

Shih S.F. and Doolittle J.A., 1984. Using radar to investigate organic soil thickness in the Florida Everglades. Soil Sci. Soc. Am. J., 48, 651-656.

Stoffregen H., Zenker T., and Wessolek G., 2002. Accuracy of soil water content measurements using ground penetrating radar: comparison of ground penetrating radar and lysimeter data. J. Hydrol., 267, 201-206.

Stoops W., 1934. The dielectric properties of cellulose. J. Am. Chem. Soc., 56, 1480-1483.

Sucre E.B., Tuttle J.W., and Fox T.R., 2011. The use of groundpenetrating radar to accurately estimate soil depth in rocky forest soils. Forest Sci., 57, 59-66.

Tanikawa T., Hirano Y., Dannoura M., Yamase K., Aono K., Ishii M., Igarashi T., Ikeno H., and Kanazawa Y., 2013. Root orientation can affect detection accuracy of groundpenetrating radar. Plant Soil, 373, 317-327.

Thompson S.M., 2014. Evaluation of terrestrial laser scanning and ground penetrating radar for field-based high-throughput phenotyping in wheat breeding. Doctoral dissertation, Texas A&M University. Available electronically from

Thompson S.M., Cosssani C.M., Ibrahim A.M.H., Reynolds M.P., Goodman D., and Hays D.B., 2013. Estimating wheat root biomass using ground penetrating radar.

Topp G., Davis J., and Annan A.P., 1980. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Wat. Resources Res., 16, 574-582.

Tosti F., Patriarca C., Slob E., Benedetto A., and Lambot S., 2013. Clay content evaluation in soils through GPR signal processing. J. Appl. Geophys., 97, 69-80.

Tran A.P., Ardekani M.R.M., and Lambot S., 2012. Coupling of dielectric mixing models with full-wave ground-penetrating radar signal inversion for sandy-soil-moisture estimation. Geophys., 77, H33-H44.

Tran A.P., Bogaert P., Wiaux F., Vanclooster M., and Lambot S., 2015. High-resolution space-time quantification of soil moisture along a hillslope using joint analysis of ground penetrating radar and frequency domain reflectometry data. J. Hydrol., 523, 252-261.

Truman C., Perkins H., Asmussen L., and Allison H., 1988. Using ground-penetrating radar to investigate variability in selected soil properties. J. Soil Water Conserv., 43, 341-345.

Upchurch D. and Ritchie J., 1983. Root observations using a video recording system in mini-rhizotrons. Agron. J., 75, 1009-1015.

Van Dam R.L., 2014. Calibration functions for estimating soil moisture from GPR dielectric constant measurements. Comm. Soil Sci. Plant Anal., 45, 392-413.

Veihmeyer F. and Hendrickson A., 1946. Soil density as a factor in determining the permanent wilting percentage. Soil Sci., 62, 451-456.

Wagner W., Lemoine G., and Rott H., 1999. A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ., 70, 191-207.

Walker J.S., 2008. A Primer on Wavelets and Their Scientific Applications. CRC Press, Boca Raton, FL. USA.

Wang B., Zhang W., Ahanbieke P., Gan Y., Xu W., Li L., Christie P., and Li L., 2014. Interspecific interactions alter root length density, root diameter and specific root length in jujube/wheat agroforestry systems. Agroforest. Syst., 88, 835-850.

Wang L. and Qu J.J., 2009. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Sci. China, 3, 237-247.

Wang Y., Zhang X., Liu X., Zhang X., Shao L., Sun H., and Chen S., 2013. The effects of nitrogen supply and water regime on instantaneous WUE, time-integrated WUE and carbon isotope discrimination in winter wheat. Field Crops Res., 144, 236-244.

Wang Z., Ma B.L., Gao J.L., and Sun J.Y., 2015. Effects of different management systems on root distribution of maize. Can. J. Plant Sci., 95, 21-28.

Wasson A., Richards R., Chatrath R., Misra S., Prasad S.S., Rebetzke G., Kirkegaard J., Christopher J., and Watt M., 2012. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot., 63, 3485-3498.

Weaver W., 2006. Ground-penetrating radar mapping in clay: Success from Soth Carolina, USA. Archaeol. Prospect., 13, 147-150.

Weihermüller L., Huisman J., Lambot S., Herbst M., and Vereecken H., 2007. Mapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques. J. Hydrol., 340, 205-216.

Welbank P. and Williams E., 1968. Root growth of a barley crop estimated by sampling with portable powered soil-coring equipment. J. Appl. Ecol., 5, 477-481.

West L.J., Handley K., Huang Y., and Pokar M., 2003. Radar frequency dielectric dispersion in sandstone: Implications for determination of moisture and clay content. Wat. Resources Res., 39, 1026.

Wielopolski L., Hendrey G., Daniels J.J., and McGuigan M., 2000. Imaging tree root systems in situ (Eds D.A. Noon, G.F. Stickley, D. Longstaff). Proc. 8th Int. Conf. Ground- Penetrating radar, Gold Coast, Queensland, Australia, May 23-26. Proc. SPIE Int. Society of Optical Engineering, Bellingham, WA, USA.

Wijewardana Y., Galagedara L., Mowjood M., and Kawamoto K., 2015. Assessment of inorganic pollutant contamination in groundwater using ground penetrating radar (GPR). Trop. Agricult. Res., 26, 700-706.

Winkelbauer J., Völkel J., Leopold M., and Bernt N., 2011. Methods of surveying the thickness of humous horizons using ground penetrating radar (GPR): an example from the Garmisch-Partenkirchen area of the Northern Alps. Eur. J. Forest Res., 130, 799-812.

Yadav B.K. and Mathur S., 2008. Modeling soil water uptake by plants using nonlinear dynamic root density distribution function. J. Irrig. Drain. Eng., 134, 430-436.

Yeung S.W., Yan W.M., and Hau C.H.B., 2016. Performance of ground penetrating radar in root detection and its application in root diameter estimation under controlled conditions. Sci. China Earth Sci., 59, 145-155.

Yoder R.E., Freeland R.S., Ammons J.T., and Leonard L.L., 2001. Mapping agricultural fields with GPR and EMI to identify offsite movement of agrochemicals. J. Appl. Geophys., 47, 251-259.

Zaman-Allah M., Jenkinson D.M., and Vadez V., 2011. A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. J. Exp. Bot., 62, 4239-4252.

Zenone T., Morelli G., Teobaldelli M., Fischanger F., Matteucci M., Sordini M., Armani A., Ferrè C., Chiti T., and Seufert G., 2008. Preliminary use of ground-penetrating radar and electrical resistivity tomography to study tree roots in pine forests and poplar plantations. Funct. Plant Biol., 35, 1047-1058.

Zhang X., Chen S., Sun H., Wang Y., and Shao L., 2009. Root size, distribution and soil water depletion as affected by cultivars and environmental factors. Field Crops Res., 114, 75-83.

Zhang X., Shao L., Sun H., Chen S., and Wang Y., 2012. Incorporation of soil bulk density in simulating root distribution of winter wheat and maize in two contrasting soils. Soil Sci. Soc. Am. J., 76, 638-647.

Zhang X., Zhang X., Liu X., Shao L., Sun H., and Chen S., 2015. Incorporating root distribution factor to evaluate soil water status for winter wheat. Agricult. Water Manag., 153, 32-41.

Zhu S., Huang C., Su Y., and Sato M., 2014. 3D ground penetrating radar to detect tree roots and estimate root biomass in the field. Remote Sens., 6, 5754-5773.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 265 265 51
PDF Downloads 186 186 55