Assessment of N2O emissions from rapeseed cultivation in Poland by various approaches

Open access


The aim of this study was to compare four tools for calculation of nitrous oxide (N2O) emissions under the renewable energy directive. All the tools follow the methodology of the international panel on climate change. The first calculations of N2O fluxes were based on the Tier 1 method using the BioGrace tool. The second and the third ones followed the Tier 2 methodology, applying the global nitrous oxide calculator and the Lesschen emission factors, respectively. The last assessment was performed in accordance with the Tier 3 approach by using the denitrification- decomposition model. The N2O fluxes were calculated for rapeseed cultivation in a 4-year crop rotation in Poland. The same input data were applied in all methods. The average of N2O emissions varied in the range of 1.99-3.78 kg N2O ha-1 y-1, depending on the approach used (Lesschen emission factors > denitrificationdecomposition > global nitrous oxide calculator > BioGrace). This paper illustrates that, at country level, the Lesschen emission factors method worked as well as the denitrification-decomposition model for Poland. The advantage of this approach is the simplicity of collecting the necessary data, in contrast to process-based modelling. Moreover, the Tier 2 method provides mitigation measures similar to the denitrification-decomposition model, related to crop type, climatic conditions, and management practices.

Abdalla M., Wattenbach M., Smith P., Ambus P., Jones M., and Williams M., 2009. Application of the DNDC model to predict emissions of N2O from Irish agriculture. Geoderma, 151, 327-337.

Beheydt D., Boeckx P., Sleutel S., Li C., and Van Cleemput O., 2007. Validation of DNDC for 22 long-term N2O field emission measurements. Atmospheric Environ., 41(29), 6196-6211.

BioGrace. Harmonized Calculations of Biofuel Greenhouse Gas Emissions in Europe.

Borzęcka-Walker M., Faber A., Pudełko R., Kozyra J., Syp A., and Borek R., 2011. Life cycle assessment (LCA) of crops for energy production. J. Food, Agric. Environ., 9(3-4), 698-700.

CSO, 2015. Statistical yearbook of agriculture. Central Statistical Office, Warsaw, Poland.

Del Grosso S.J., Ogle S.M., Parton W.J., and Breidt F.J., 2010. Estimating uncertainty in N2O emissions from US crop land soils. Glob Biogeochemical Cycles, 24, 1-12. doi:

Denef K., Paustian K., Archibeque S., Biggar S., and Pape D., 2012. Report of Greenhouse Gas Accounting Tools for Agriculture and Forestry Sectors (Interim Report to USDA under Contract No. GS23F8182H 140) (available online at et al. 2012 GHG Accounting Tools v1.pdf, accessed: 13.01.13).

Edwards R., Mulligan D., Jacopo G., Alessandro A., Aikaterini B., Renate K., Luisa M., Alberto M., and Monica P., 2012. Assessing GHG default emissions from biofuels in EU legislation. JRC Scientific and Policy Report. Institute for Energy and Transport. Ispra, Italy.

European Union, 2009. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of Energy from renewable sources and amending and subsequently repealing Directives 2001/77/ EC and 2003/30/EC. Official J. European Union, 140, 16-62.

European Union, 2013. Commission Implementing Decision of 30 May 2013 on recognition of the ‘BioGrace GHG calculation tool’ for demonstrating compliance with the sustainability criteria under Directives 98/70/EC and 2009/28/ EC of the European Parliament and of the Council. Official J. European Union, 147, 46-47.

Gabrielle B., Laville P., Henault C., Nicoullaud B., and Germon J.C., 2006. Simulation of nitrous oxide emissions from wheat cropped soils using CERES. Nutrient Cycling in Agroecosystems, 74, 133-146. doi:

Gilhespy S.L., Anthony S., Cardenas L., Chadwick D., del Prado A., Li C., Misselbrook T., Rees R.M., Salas W., Sanz-Cobena A., Smith P., Tilston E.L., Topp C.F.E., Vetter S., and Yeluripati J.B., 2014. First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecological Modelling, 292, 51-62.

Giltrap D.L., Li Ch., and Saggar S., 2010. DNDC: A processbased model of greenhouse gas fluxes from agricutural soils. Agicutulture, Ecosystems Enviorn., 136, 292-300.

Grant R.F. and Pattey E., 2003. Modelling vaaribility in N2O emissions from fertilized agricutrual fields. Soil Biology Biochem., 35, 225-243.

Hamelinck C., De Loveinfosse I., Koper M., Beestermoeller Ch., Nabe Ch., Kimmel M., Bos A., Yildiz I., and Harteveld M., 2012. Renewable energy progress and biofuels Sustainability. Ecofys, London.

IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories (Eds S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe), Agriculture, Forsetry and Other Land Use, Vol. 4, IGES, Japan.

Kesik M., Ambus P., Baritz R., Bruggemann N., Butterbach- Bahl K., Damm M., Duyzer J., Horvath L., Kiese R., Kitzler B., Leip A., Li C., Pihlatie M., Pilegaard K., Seufert G., Simpson D., Skiba U., Smiatek G., Vesala T., and Zechmeister-Boltenstern S., 2005. Inventories of N2O and NO emissions from European forest soils. Biogeoscinces, 2, 353-375.

Köble R., 2014. The Global Nitrous Oxide Calculator − GNOC - Online Tool Manual. JRC Technical Report, Joint Research Centre, Institute for Energy and Transport, Ispra, Italy.

Leip A., Busto M., and Winiwarter W., 2011. Developing spatially stratified N2O emission factors for Europe. Environ. Pollution, 159, 3223-3232.

Leip A., Marchi G., Koeble R., Kempen M., Britz W., and Li C., 2008. Linking an economic model for European agriculture with a mechanistic model to estimate nitrogen and carbon losses from arable soils in Europe. Biogeosciences, 5, 73-94.

Lesschen J.P., Velthof G.L., de Vries W., and Kros J., 2011. Differentiation of nitrous oxide emission factors for agricultural soils. Environ. Pollution, 159, 3215-3222.

Li C., Zhuang Y., Cao M., Crill P., Dai Z., Frolking S., Moore III B., Salas W., Song W., and Wang X., 2001. Comparing a process-based agro-ecosystem model to the IPCC methodology for developing a national inventory of N2O emissions from arable lands in China. Nutrient Cycling in Agroecosystems, 60, 159-175.

Lugato E., Zuliani M., Alberti G., Vedove G.D., Gioli B., Miglietta F., and Peressotti A., 2010. Application of DNDC biogeochemistry model to estimate greenhouse gas emissions from Italian agricultural areas at high spatial resolution. Agric., Ecosystems Environ., 139(4), 546-556.

Olecka A., Bebkiewicz K., Dębski B., Jędrysiak P., Kanafa M., Kargulewicz I., Rutkowski J., Sędziwa M., Skośkiewicz J., Zasina D., Zimakowska-Laskowska M., and Żaczek M., 2014. Poland’s national inventory report. The National Centre for Emissions Management, Warszawa, Poland.

Perlman J., Hijmans R.J., and Horwath W.R., 2013. Modelling agricutrual nitrous oxide emssions for large regions. Envirnmnetal Modelling and Software, 48, 183-192.

Peter C., Fiore A., Hagemann U., Nendel C., and Xiloyannis C., 2016. Improving the accounting of field emissions in the carbon footprint of agricultural products: a comparison of default IPCC methods with readily available mediumeffort modeling approaches. The Int. J. Life Cycle Assessment, 21(6), 791-805.

Smith W.N., Grant B.B., Campbell C.A., McConkey B.G., Desjardins R.L., Kröbel R., and Malhi S.S., 2012. Crop residue removal effects on soil carbon: Measured and intermodel comparisons. Agric., Ecosystems Environ., 161, 27-38.

Smith W.N., Grant B.B., Desjardins R.L., Worth D., Li C., Boles S.H., and Huffman E.C., 2010. A tool to link agricultural activity data with the DNDC model to estimate GHG emission factors in Canada. Agric., Ecosystems Environ., 136(3-4), 301-309.

Stehfest E. and Bouwman L., 2006. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutrient Cycling Agroecosys., 74, 207-228.

Syp A., Faber A., Kozyra J., Borek R., Pudełko R., Borzęcka- Walker M., and Jarosz Z., 2011. Modeling Impact of Climate Change and Management Practices on Greenhouse Gas Emissions from Arable Soils. Polish J. Environ. Study, 20, 1593-1602.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 107 107 13
PDF Downloads 35 35 3