Elastic and plastic soil deformation and its influence on emission of greenhouse gases

Open access


Soil management alters physical, chemical and biological soil properties. Stress application affects microbiological activity and habitats for microorganisms in the root zone and causes soil degradation. We hypothesized that stress application results in altered greenhouse gas emissions if soil strength is exceeded. In the experiments, soil management dependent greenhouse gas emissions of intact soil cores (no, reduced, conventional tillages) were determined using two experimental setups; CO2 emissions were determined with: a dynamic measurement system, and a static chamber method before and after a vertical soil stress had been applied. For the latter CH4 and N2O emissions were analyzed additionally. Stress dependent effects can be summed as follows: In the elastic deformation range microbiological activity increased in conventional tillage soil and decreased in reduced tillage and no tillage. Beyond the precompression stress a release of formerly protected soil organic carbon and an almost total loss of CH4 oxidizability occurred. Only swelling and shrinkage of no tillage and reduced tillage regenerated their microhabitat function. Thus, the direct link between soil strength and microbial activity can be applied as a marker for soil rigidity and the transition to new disequilibria concerning microbial activity and composition.

Acha V., Alba J., and Thalasso F., 2002. The absolute requirement for carbon dioxide for aerobic methane oxidation by a methanotrophic-heterotrophic soil community of bacteria. Biotechnology Letters, 675, 675-679.

Bender M. and Conrad R., 1994. Methane oxidation activity in various soils and fresh-water sediments-occurrence, characteristics, vertical profiles, and distribution on grain-size fractions. J. Geophys. Res. Atmos., 99(1994) 16531-16540.

Blume H.-P., Stahr K., and Leinweber P., 2010. Bodenkundliches Praktikum. Spektrum, Heidelberg.

Bretz F., Hothorn T., and Westfall P., 2011. Multiple Comparisons Using R. Chapman and Hall Book, CRC Press, Boca Raton, London, New York.

Dalton H., 1977. Ammonia oxidation by the methane oxidizing bacterium Methylococcus capsulatus strain. Bath. Arch. Microbiol., 114, 273-279.

Ehlers W., Köpke U., Hesse F., and Böhm W., 1983. Penetration resistance and root growth of oats in tilled and untilled loess soil. Soil Tillage Res., 3(3), 261-275.

Ehlers W., Werner D., and Mähner T., 2000. Wirkung mechanischer Belastung auf Gefüge und Ertragsleistung einer Löss-Parabraunerde mit zwei Bearbeitungssystemen.J. Plant Nutr. Soil Sci., 163, 321-333.

Fazekas O. and Horn R., 2005. Zusammenhang zwischen hydraulischer und mechanischer Bodenstabilität in Abhängigkeit von der Belastungsdauer. J. Plant Nutr. Soil Sci., 168, 60-67.

Hartge K. and Bohne H., 1983. Einfluß der Gefügegeometrie auf Verdichtbarkeit des Bodens und auf Keimung von Roggen. Z. f. Kulturtechnik und Flurbereinigung, 24, 11-18.

Hartge K.H. and Horn R., 2009. Die physikalische Untersuchung von Böden. Schweizerbart’sche Verlagsbuchhandlung.

Hartge K.H. and Horn R., 2014. Einführung in die Bodenphysik. Schweizerbart’sche Verlagsbuchhandlung, ISBN 978-3-510-65288-4.

Horn R., 2004. Structure formation and its consequences on gas and water transport in unsaturated arable and forest soils. In: Soil-Plant-Atmosphere Aeration and Environmental Problems (Eds J. Gliński, G. Józefaciuk, K. Stahr), Lublin – Stuttgart.

Horn R., Domżał H., Słowińska-Jurkiewicz A., and van Ouwerkerk C., 1995. Soil compaction processes and their effects on structure of arable soils and environment. Soil Till. Res., 35, 23-36.

Horn R. and Fleige H., 2003. A method for assessing the impact of load on mechanical stability and on physical properties of soils. Soil Till. Res., 73, 89-99.

Horn R. and Smucker A., 2005. Structure formation and its consequences for gas and water transport in unsaturated arable and forest soils. Soil Till. Res., 82, 5-14.

Horn R., Taubner H., Wuttke M., and Baumgartl T., 1994. Soil physical properties related to soil structure. Soil Till Res., 30, 187-216.

Horn R., van den Akker J.J.H., and Arvidsson J., 2000. Subsoil compaction: Distribution, processes and consequences. Advances in GeoEcology, 32, Catena, Reiskirchen, 462 S.

Jasińska E., Wetzel H., Baumgartl T., and Horn R., 2006. Heterogeneity of physico-chemical properties in structured soils and its consequences. Pedosphere, 16(3), 284-296.

King G.M. and Schnell S., 1994. Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations. Appl. Environ. Microbiol., 60, 3508-3513.

Kuzyakov Y. and Blagodatskaya E., 2015. Microbial hotspots and hot moments in soil: Concept review. Soil Biol. Biochem., 83, 184-199.

Linn D.M. and Doran J.W., 1984. Effect of Water-Filled Pore Space on Carbon Dioxide and Nitrous Oxide Production in Tilled and Nontilled Soils. Soil Sci. Soc. Am. J., 48, 1267-1272.

Mancinelli R.L. and McKay C.P., 1985. Methane-oxidizing bacteria in sanitary landfills. In: First Int. Symposium Biotechnological Advances in Processing Municipal Wastes for Fuels and or Chemicals (Ed. A. Antonopoulos), 438-450.

McGill J., Tukey J.W., and Larsen W.A., 1978. Variations of box plots. The American Statistician, 32(1), 12-16.

Mer J.L. and Roger P., 2001. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol., 37, 25-50.

Mordhorst A., Peth S., and Horn R., 2014. Influence of mechanical loading on static and dynamic CO2 efflux on differently textured and managed Luvisols. Geoderma, 219-220, 1-13.

Nesbit S.P. and Breitenbeck G.A., 1992. A laboratory study of factors influencing methane uptake by soil. Agric. Ecosys. Environ., 41, 39-54.

Nichols K.A. and Halvorson J.J., 2013. Roles of biology, chemistry and physics in soil macroaggregate formation and stabilization. The Open Agr. J., 7, 107-117.

Pell M., Stenström J., and Granhall U., 2006. Soil respiration. In: Microbiological Methods for Assessing Soil Quality (Eds J. Bloem, D.W. Hopkins, A. Benedetti). Cab Intl.

Pengthamkeerati P., Motavalli P.P., and Kremer R.J., 2011. Soil microbial activity and functional diversity changed by compaction, poultry litter and cropping in a claypan soil. Appl. Soil Ecol., 48(1), 71-80.

Peth S., 2004. Bodenphysikalische Untersuchungen zur Trittbelastung von Böden bei der Rentierweidewirtschaft an borealen Wald und subarktisch-alpinen Tundrenstandorten.

Peth S., Rostek J., Zink A., Mordhorst A., and Horn R., 2010. Soil testing of dynamic deformation processes of arable soils. Soil Till. Res., 106(2), 317-328.

Powlson D.S., Goulding K.W.T., Willison T.W., Webster C.P., and Hutsch B.W., 1997. The effect of agriculture on methane oxidation in soil. Nutr. Cycl. in Agroecosys., 49, 59-70.

R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

Schaarschmidt F. and Vaas L., 2009. Analysis of Trials with Complex Treatment Structure Using Multiple Contrast Tests, Hortscience, 44, 188-195.

Schlichting E., Blume H.-P., and Stahr K., 1995. Bodenkundliches Praktikum. Blackwell Wissenschafts-Verlag, Berlin, Wien.

Six J., Bossuyt H., Degryze S., and Denef K., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res., 79, 7-31

Suarez D.L. and Simunek J., 1993. Modelling of Carbon Dioxide Transport and Production in Soil 2. Parameter Selection, Sensitivity Analysis, and Comparison of Model Predictions to field Data. Water Resour. Res., 29(2), 499-513.

Stępniewski W., 2002. Oxygen diffusion rate and plant growth. In: Encyclopedia of Soil Science, Marcel-Dekker, Inc. ISBN: 082470634.

Stępniewski W. and Stępniewska Z., 2009. Selected oxygen-dependent process – Response to soil management and tillage. Soil Till. Res., 102, 193-200.

Verbeke G. and Molenberghs G., 2000. Linear Mixed Models for Longitudinal Data, Springer.

Watts C.W., Hallett P.D., and Dexter A.R., 1999. Effects of mechanical stresses and strains on soil respiration. In: The effect of mineralorganic microorganism interactions on soil and freshwater environments (Eds J. Berthelin et al.). Plenum Publ., New York.

Wiesmeier M., Steffens M., Mueller C.W., Kölbl A., Reszkowska A., Peth S., Horn R., and Kögel-Knabner I., 2012. Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. Eur. J. Soil Sci., 63(1), 22-31.

Wrage N., Velthof G.L., Beusichem van M.L., and Oenema O., 2001. Role of nitrifier denitrification in the production of nitrous oxide, Soil Biol. Biochem., 33, 1723-1732.

WRB, 2006. World reference base for soil resources, FAO. ed, World Soil Resources Reports No. 103, Rome.

Zibilske L.M., 1994. Carbon mineralization. In: Methods of Soil Analysis. Part 2 (Eds J.M. Bigham et al.). SSSA Book Ser. 5. SSSA, Madison, WI, USA.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2018: 1.44

SCImago Journal Rank (SJR) 2018: 0.399
Source Normalized Impact per Paper (SNIP) 2018: 0.891

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 187 153 9
PDF Downloads 311 304 26