Simulation of CO2 enrichment and climate change impacts on soybean production

Open access

Abstract

The potential doubling of atmospheric CO2 concentration and associated changes in temperature and precipitation are crucial issues for agricultural productivity. The CROPGRO-Soybean model in decision support system for agro-technology transfer v4.5 to simulate soybean (Glycine max cv. Pioneer 93B15) grown in an elevated CO2 environment was calibrated and validated. Crop growth and yield data were obtained from a series of experiments conducted in central Illinois at the soybean free air CO2 enrichment facility from 2002 to 2006. The model was applied to simulate the possible impacts of climate change on soybean yield in the region for the future years of 2080-2100, centred on 2090. The model reproduced the measured soybean growth and yield well under ambient and elevated CO2 conditions. For the period from 2081 to 2100, soybean yield was projected to decrease due to elevated temperature but to increase due to elevated precipitation and CO2 concentration, achieving counterbalance. The adverse impacts of the warming conditions on soybean yield can be mitigated by late planting within an optimum planting range (day of year 145 to 152) as a management option, as well as by controlling genetic responses to thermal days in the reproductive stage.

Adams R.M., Rosenzweig C., Peart R.M., Ritchie J.T., McCarl B.A., Glyer J.D., Curry R.B., Jones J.W., Boote K.J., and Allen Jr., L.H., 1990. Global climate change and US agriculture. Nature, 345, 219-224.

Ainsworth E.A., Rogers, A., Nelson R., and Long S.P., 2004. Testing the “source-sink” hypothesisof down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric. Forest Meteorol., 122, 85-94.

Alagarswamy G., Boote K.J., Allen L.H., and Jones J.W., 2006. Evaluating the CROPGRO Soybean model ability to simulate photosynthesis response to carbon dioxide levels. Agron. J., 98, 34-42.

Baker J.T., Allen L.H., Boote K.J., Jones P., and Jones J.W., 1989. Response of soybean to air temperature and carbon dioxide concentration. Crop Sci., 9, 98-105.

Boote K.J., Hoogenboom G., Jones J.W., and Ingram K.T., 2008. Modeling nitrogen fixation and its relationship to nitrogen uptake in the CROPGRO model. In: Quantifying and Understanding Plant Nitrogen Uptake for Systems Modeling (Eds L. Ma, L.R Ahuja, T.W. Bruulsema). CRC Press, Florence, USA.

Boote K.J., Jones J.W., and Hoogenboom G., 1998. Simulation of crop growth: CROPGRO model. Marcel Dekker, New York, USA.

Boote K.J., Jones J.W., and Pickering N.B., 1996. Potential uses and limitations of crop models. Agronomy J., 88, 704-716.

Conley M.M., Kimball B.A., Brooks T.J., Pinter P.J., Hunsaker D.J., Wall G.W., Adam N.R., LaMorte R.L., Matthias A.D., Thompson T.L., Leavitt S.W., Ottman M.J., Cousins A.B., and Triggs J.M., 2001. CO2 enrichment increases water-use efficiency in sorghum. New Phytologist, 151, 407-412.

Cure J.D. and Acock B., 1986. Crop responses to carbon dioxide doubling: a literature survey. Agric. Forest Meteorol., 38, 127-145.

Cutforth H.W., McGinn S.M., McPhee K.E., and Miller P.R., 2007. Adaptation of pulse crops to the changing climate of the Northern Great Plains. Agronomy J., 99, 1684-1699.

Dhungana P., Eskridge K.M., Weiss A., and Baenziger P.S., 2006. Designing crop technology for a future climate: an example using response surface methodology and the CERES-Wheat model. Agric. Syst., 87, 63-79.

Farquhar G.D. and von Caemmerer S., 1982. Modeling of photosynthetic response to environment. In: Encyclopedia of plant physiology. Physiological Plant Ecology II. (Ed. O.L. Lange). Springer-Verlag, Berlin, Germany.

Goldblum D., 2009. Sensitivity of corn and soybean yield in Illinois to air temperature and precipitation: the potential impact of future climate change. Physical Geography, 30, 27-42.

Hansen J., Sato M., Ruedy R., Nazarenko L., Lacis A., Schmidt G.A., Russell G., Aleinov I., Bauer M., Bauer S., Bell N., Cairns B., Canuto V., Chandler M., Cheng Y., Del Genio A., Faluvegi G., Fleming E., Friend A., Hall T., Jackman C., Kelly M., Kiang N., Koch D., Lean J., Lerner J., Lo K., Menon S., Miller R., Minnis P., Novakov T., Oinas V., Perlwitz J., Rind D., Romanous A., Shindell D., Stone P., Sun S., Tausnev N., Thresher D., Wielicki B., Wong T., Yao M., and Zhang S., 2005. Efficacy of climate forcings. J. Geophysical Res., 14, D18104.

Hendry G.R., Lewin K.F., and Nagy J., 1993. Free air carbon dioxide enrichment development, progress, results. Plant Ecology, 104, 17-31.

Hoogenboom G., Jones J.W., Wilkens P.W., Porter C.H., Boote K.J., Hunt L.A., Singh U., Lizaso J.L., White J.W., Uryasev O., Royce F.S., Ogoshi R., Gijsman A.J., Tsuji G.Y., and Koo J., 2012. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5. University of Hawaii, Honolulu, Hawaii.

Irmak A., Jones J.W., and Jagtap S.S., 2005. Evaluation of the CROPGRO-Soybean model for assessing climate impacts on regional soybean yield. Am. Soc. Agric. Eng., 48, 2343-2353.

IPCC, 2013. Climate change 2013: the physical science basis. Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change (Eds T.F. Stocker, D. Qin, G.-K. Plattner, M.M.B. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley), Cambridge University Press, New York, NY, USA.

Jones J.W., Hoogenboom G., Porter C.H., Boote K.J., Batchelor W.D., Hunt L.A., Wilkens P.W., Singh U., Gijsman A.J., and Ritchie J.T., 2003. The DSSAT cropping system model. Europ. J. Agron., 18, 235-265.

Kimball B.A., 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron. J., 75, 779-788.

Kimball B.A., Kobayashi K., and Bindi M., 2002. Responses of agricultural crops to free-air CO2 enrichment. Advances Agronomy, 77, 293-368.

Ko J., Ahuja L., Kimball B., Anapalli S., Ma L., Green T.R., Ruane A.C., Wall G.W., Pinter P., and Bader D.A., 2010. Simulation of free air CO2 enriched wheat growth and interactions with water, nitrogen, and temperature. Agric. Forest Meteorology, 150, 1331-1346.

Lawlor D.W. and Mitchell R.A.C., 1991. The effects of increasing CO2 on crop photosynthesis and productivity: a review of field studies. Plant, Cell Environment, 14, 807-818.

Le Quéré C., Raupach M.R., Canadell J.G., and Marland G., 2009. Trends in the source and sinks of carbon dioxide. Nature Geoscience, 2, 831-836.

Leakey A.D.B., Uribelarrea M., Ainsworth E.A., Naidu S.L., Rogers A., Ort D.R., and Long S.P., 2006. Photosynthesis, productivity, and yield of maize are not affected by open air elevation of CO2 concentration in the absence of drought. Plant Physiol., 140, 397-398.

Li D., Liu H., Qiao Y., Wang Y., Cai Z., Dong B., Shi C., Liu Y., Li X., and Liu M., 2013. Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max (L.) Merr.) under drought stress. Agric. Water Manag., 129, 105-112.

Long J.S. and Freese J., 2006. Food for thought: Lower than expected crop yield stimulation with rising CO2 concentrations. Science Mag., 312, 1918-1921.

Ma L., Malone R.W., Jaynes D.B., Throp K., and Ahuja L.R., 2008. Simulated effects of nitrogen management and soil microbes on soil N balance and crop production. Soil Sci. Soc. Am. J., 72, 1594-1603.

Masle J., Doussinault G., and Sun B., 1989. Responses of wheat genotypes to temperature and photoperiod in natural conditions. Crop Sci., 29, 712-721.

Miglietta F., Hoosbeek M.R., Foot J., Gigon F., Hassinen A., Heijmans M., Peressotti A., Saarinen T., van Breemen N., and Wallén B., 2001. Spatial, temporal performance of the MiniFACE, (Free Air CO2 Enrichment) system on bog ecosystems in northern, central Europe. Environmental Monitoring Assessment, 66, 107-127.

Morison J.I.L. and Lawlor D.W., 1999. Interactions between increasing CO2 concentration and temperature on plant growth. Plant, Cell Environ., 22, 659-682.

Pickering N.B., Jones J.W., and Boote K.J., 1995. Adapting SOYGRO V5.42 for prediction under climate change conditions. In: Climate change and agriculture: Analysis of potential international impacts (Eds C. Rosenzweig et al.). ASA Spec. Publ. 59. ASA, CSSA, and SSSA, Madison, WI, USA.

Roberto J.M, Niyogi D., Buol G.S., Wilkerson G.G., and Semazzi F.H.M., 2006. Potential individual versus simultaneous climate change effects on soybean (C3) and maize (C4) crops: An agrotechnology model based study. Global Planetary Change, 54, 163-182.

Ruìz-Nogueira B., Boote K.J., and Sau F., 2001. Calibration and use of CROPGRO Soybean model for improving soybean management under rainfed conditions. Agric. Systems, 68, 151-173.

Samarakoon A.B. and Gifford R.M., 1996. Elevated CO2 effects on water use and growth of maize in wet and drying soil. Australian J. Plant Physiology, 23, 53-62.

Sau F., Boote K.J., and Ruìz-Nogueira B., 1999. Evaluation and improvement of CROPGRO-Soybean model for a cool environment in Galicia, northwest Spain. Field Crops Res., 61, 273-291.

Schlenker W. and Roberts M.J., 2008. Estimating the impact of climate change on crop yields: The importance of nonlinear temperature effects. NBER Working Paper 13799, National Bureau of Economic Research, Massachusetts, USA.

Tubiello F.N., Cynthia R., Kimball B.A., Pinter Jr. P.J., Wall G.W., Hunsaker D.J., LaMorte R.L., and Garcia R.L., 1999. Testing CERES-Wheat with free-air carbon dioxide enrichment (FACE) experiment data: CO2 and water interactions. Agronomy J., 91, 247-255.

Twine T.E., Bryant J.J., Richter K.T., Bernacchi C.J., McConnaughay K.D., Morris S.J., and Leakey A.D.B., 2013. Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA. Global Change Biology, 19, 2838-2852.

Wilkerson G.G., Jones J.W., Boote K.J., and Mishoe J.W., 1985. SOYGRO V 5.0. Soybean crop growth and yield model. Technical Documentation, Univ. Florida, Gainesville, FL, USA

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 290 265 12
PDF Downloads 192 188 15