Atmospheric moisture controls far-red irradiation: a probable impact on the phytochrome

Open access


It is commonly accepted that an important role of the phytochrome lies in signalling the proximity of competing plants. However, not all photoresponses conveyed by the phytochrome can be explained by the competition only. Because a better description of the natural variability of solar spectral irradiance is necessary to recognize the other roles of the phytochrome, long-lasting spectroradiometric measurements have been performed. Special attention has been paid to the relations between the far-red and red bands of the solar spectrum, which have an impact on the phytochrome. The effect of atmospheric moisture on far-red irradiance (attenuated in the 720 nm band of water vapour absorption) is described. The far-red irradiance, active in the ‘high irradiance response’ of the phytochrome, and the red/far-red ratio, important for the ‘low fluence response’, may vary very strongly relative to the atmospheric moisture. Together with other facts known from photophysiology, the results of the measurements enabled us to formulate a thesis that the phytochrome monitors the amount of water vapour and opens appropriate metabolic pathways to cope with the danger of drought. The recognition of this novel role of the phytochrome might broaden the knowledge in the area of plant photomorphogenesis and ecology.

Auge G.A., Rugnone M.L., Cortés L.E., González C.V., Zarlavsky G., Boccalandro H.E., and Sánchez R.A., 2012. Phytochrome A increases tolerance to high evaporative demand. Physiol Plant, 146, 228-235.

Ballare C.L., Sánchez R.A., Scopel A.L., Casal J.J., and Ghersa C.M., 1987. Early detection of neighbour plants by phytochrome perception of spectral changes in reflected sunlight. Plant Cell Environ., 10, 551-557.

Björn L.O., 2015. Terrestrial daylight. In: Photobiology (Ed. L.O. Björn). Springer Press, New York, USA.

Boccalandro H.E., Rugnone M.L., Moreno J.E., Ploschuk E.L., Serna L., Yanovsky M.J., and Casal J.J., 2009. Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis, Plant Physiol, 150, 1083-1092.

Borthwick H., 1972. History of phytochrome. In: Phytochrome (Eds K. Mitrakos, W. Shropshire). Academic Press, London - New York.

Briggs W.R., 2009. The ever widening world of plant photoreceptors: what they are and what they do. Ann. Rev. Plant Biol., 60, doi: 10.1146/annurev.arplant.59.092409.100001

Briggs W.R., Mandoli D.F., Shinkle J.R., Kaufman L.S., Watson J.C., and Thompson W.F., 1984. Phytochrome regulation of plant development at the whole plant, physiological and molecular levels. In: Sensory Perception and Transduction in Aneural Organisms (Eds G. Colombetti, F. Lenci, P.S. Song). Plenum, New York, USA.

Casal J.J., Sánchez R.A., and Botto J.F., 1998. Modes of action of phytochromes. J Exp. Bot., 49, 127-138.

Casal J.J. and Smith H., 1989. The function, action and adaptive significance of phytochrome in light-grown plants. Plant Cell Environ, 12, 855-862.

Clack T., Mathews S., and Sharrock R.A., 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences of expression of PHYD and PHYE. Plant Mol. Biol., 25, 413-427.

Davis S.J., Vener A.V., and Vierstra R.D., 1999. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic Eubacteria. Sci., 286, 2517-2520.

D’Amico-Damiāo V., Cruz F.J.R., Gavassi M.A., Santos D.M.M., Melo H.C., and Carvalho R.F., 2015. Photomorphogenic modulation of water stress in tomato (Solanum lycopersicum L.): the role of phytochromes A, B1, and B2. J. Horticult. Sci. Biotechn., 90, 25-30.

Doroszewski A., 2011. Spectral composition of radiation as the control factor for habit and yield of wheat (in Polish). Monographs and Dissertations, IUNG-PIB, Puławy, 28, 1-141.

Franklin K.A., Allen T., and Whitelam G.C., 2007. Phytochrome A is an irradiance-dependent red light sensor. Plant J., 50, 108-117.

Franklin K.A. and Whitelam G.C., 2005. Phytochromes and shade-avoidance responses in plants. Ann. Bot., 96, 169-175.

González C.V., Ibarra S.E., Piccoli P.M., Botto J.F., and Boccalandro H.E., 2012. Phytochrome B increases drought tolerance by enhancing ABA sensitivity in Arabidopsis thaliana. Plant Cell Environ,, 35, 1958-1968.

Gordillo F.J.L., Segovia M., and López-Figueroa F., 2004. Cyclic AMP levels in several macroalgae and their relation to light quantity and quality. J. Plant Physiol., 161, 211-217.

Górski T., 1976. Red and far red radiation at sunset: annual cycle and dependence on precipitable water. Naturwissenschaften, 63, 530-531.

Górski T. and Górska K., 1979. Inhibitory effects of full daylight on the germination of Lactuca sativa L. Planta, 144, 121-124.

Gueymard C., 1995. SMARTS2, A simple model of the atmospheric radiative transfer of sunshine: Algorithms and performance assessment. Florida Solar Energy Center, Cocoa, FL, USA.

Hartmann K.M., 1966. A general hypothesis to interpret “high energy phenomena” of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol., 5, 349-366.

Hato M., Ueda T., Kurihara K., and Kobatake Y., 1976. Phototaxis in true slim mold Physarum polycephalum. Cell Struct. Funct., 1, 269-278.

Holmes M.G. and Smith H., 1977a. The function of phytochrome in the natural environment. I. Characterization of daylight for studies in photomorphogenesis and photoperiodism. Photochem. Photobiol., 25, 533-538.

Holmes M.G. and Smith H., 1977b. The function of phytochrome in the natural environment. II. The influence of vegetation canopies on the spectral energy distribution of natural daylight. Photochem. Photobiol., 25, 539-545.

Hubac C., Guerrier D., and Bousquet U., 1986. Effect of far red light on malate and potassium contents in cotton leaves: relation to drought resistance. Physiol. Plant, 66, 37-40.

Hughes I. and Lamparter T., 1999. Prokaryotes and phytochrome. The conection to chromophores and signaling. Plant Phisiol., 121, 1059-1068.

Hübschmann T., Yamamoto H., Gieler T., Murata N., and Börner T., 2005. Red and far-red light alter the transcript profile in the cyanobacterium Synechocystis sp. PCC6803: impact of cyanobacterial phytochromes. Fed. Eur. Biochem. Soc. Lett., 579, 1613-1618.

Jackson S. and Thomas B., 1997. Photoreceptors and signals in the photoperiodic control of development. Plant Cell Environ., 20, 790-795.

Jin S. and Luo O.F., 2009. Variability and climatology of PWV from global 13-year GPS observations. IEEE Trans. Geosci. Rem. Sens., 47, 1918-1924.

Jorissen H.J.M.M., Braslavsky S.E., Wagner G., and Gartner W., 2002. Heterologous expression and characterization of recombinant phytochrome from the green alga Mougeotia scalaris. Photochem. Photobiol., 76, 457-461.

Junges W., 1957. Die jährliche Niederschlagsverteilung als entscheidender Faktor bei der photoperiodischen Anpassung der Pflanzen. Gartenbauwissenschaft, 22, 527-540.

Kasperbauer M.J., 1987. Far-red light reflection from green leaves and effects on phytochrome-mediated assimilate partitioning under field conditions. Plant Physiol., 85, 350-354.

Kasperbauer M.J. and Peaslee D.E., 1973. Morphology and photosynthetic efficiency of tobacco leaves that received end-of-day red and far red light during development. Plant Physiol., 52, 440-442.

Kasten F., 1965. A new table and approximation formula for the relative optical air mass. Theor. Appl. Climatol., 14, 206-223.

Kidd D.G. and Lagarias J.C., 1990. Phytochrome from the green alga Mesotaenium caldariorum. J. Biol. Chem., 265, 7029-7035.

Kiedron P., Michalsky J., Schmid B., Slater D., Berndt J., Harrison L., Racette P., Westwater E., and Han Y., 2001. A robust retrieval of water vapor column in dry Arctic conditions using the rotating shadowband spectroradiometer. J. Geoph. Res., 106, 24007-24016.

Lamparter T., Podlowski S., Mittmann E., Schneider-Poetsch H., Hartmann E., and Hughes J., 1995. Phytochrome from protonemal tissue of the moss Ceratodon purpureus. J. Plant Physiol., 147, 426-434.

Lee D.W. and Downum K.R., 1991. The spectral distribution of biologically active solar radiation at Miami, Florida, USA. Int. J. Biometeor., 35, 48-54.

Lin C., 2000. Photoreceptors and regulation of flowering time. Plant Physiol., 123, 39-50.

Mathews S., 2006. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environment. Mol. Ecol., 15, 3483-3503.

Mohr H., 1972. Lectures on photomorphogenesis. Springer, Berlin-Heidelberg-New York.

Montgomery B.L. and Lagarias J.C., 2002. Phytochrome ancestry: sensors of bilins and light. Trends Plant Sci., 7, 357-366.

Ohmori M. and Okamoto S., 2004. Photoresponsive cAMP signal transduction in cyanobacteria. Photochem. Photobiol., Sci., 3, 503-511.

Possart A., Fleck Ch., and Hiltbrunner A., 2014. Shedding (far-red) light on phytochrome mechanisms and responses in land plants. Plant Sci., 217-218, 36-46.

Possart A. and Hiltbrunner A., 2013. An evolutionary conserved signaling mechanism mediates far-red light responses in land plants. Plant Cell, 25, 102-114.

Queiroz O., 1983. An hypothesis on the role of photoperiodism in the metabolic adaptation to drought. Physiol. Vég., 21, 577-588.

Ragni M. and Ribera D’Alcala M., 2004. Light as an information carrier underwater. J. Plankton Res., 26, 433-443.

Rausenberger J., Tscheuschler A., Nordmeier W., Wüst F., Timmer J., Schäfer E., Fleck C., and Hiltbrunner A., 2011. Photoconversion and nuclear trafficking cycles determine phytochrome A’s response profile to far-red light. Cell, 146, 813-825.

Robinson N., 1966. Solar radiation. Elsevier, Amsterdam.

Roth-Bejerano N., Nejidat A., and Itai C., 1985. Further support for the involvement of phytochrome in stomatal movement. Physiol. Plant, 64, 501-506.

Sharrock R.A., 2008. The phytochrome red/far-red photoreceptor superfamily. Genome Biol., 9, 230.1-230.7.

Shi C., Kataoka H., and Duan D., 2005. Effects of blue light on gametophyte development of Laminaria japonica (Laminariales, Phaeophyta). Chin. J. Ocean Limn., 23, 323-329.

Sierk B., Solomon S., Daniel J.S., Portmann R.W., Gutman S.I., Langford A.O., Eubank C.S., Dutton E.G., and Holub K.H., 2004. Field measurements of water vapor continuum absorption in the visible and near-infrared. J. Geoph. Res., 109, D08307

Smith H., 2000. Phytochromes and light signal perception by plants – an emerging synthesis. Nature, 407, 585-591.

Smith H. and Morgan D.C., 1981. The spectral characteristics of the visible radiation incident upon the surface of the earth. In: Plants and daylight spectrum (Ed. H. Smith). Academic Press, London, UK.

Smith H. and Whitelam G.C., 1997. The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ., 20, 840-844.

Sokolskaya S.V., Sveshnikova N.V., Kochetova G.V., Solovchenko A.E., Gostimski S.A., and Bashtanova O.B., 2003. Involvement of phytochrome in regulation of transpiration: red-/far red-induced responses in the chlorophyll-deficient mutant of pea. Funct. Plant Biol., 30, 1249-1259.

Talbot L.D., Zhu J., Han S.W., and Zeiger E., 1985. Phytochrome and blue light-mediated stomatal opening in the orchid, Paphiopedilum. Plant Cell Physiol., 43, 639-646.

Taylor A.O. and Bonner B.A., 1967. Isolation of phytochrome from the alga Mesotaenium and liverwort Sphaerocarpos. Plant Physiol., 42, 762-766.

Thome K.J., Herman B.M., and Reagan J.A., 1992. Determination of precipitable water from solar transmission. J. Appl. Meteor., 31, 157-165.

Ulijasz A.T., Cornilescu G., Von Stetten D., Cornilescu C., Escobar F.V., Zhang J., Stankey R.J., Rivera M., Hildebrandt P., and Vierstra R.D., 2009. Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore. J. Biol. Chem., 284, 29757-29772.

University of Wyoming, 2014. Sounding map. Available at: Last accessed 12 Apr. 2014.

Vince-Prue V., 1975. Photoperiodism in plants. McGraw-Hill, London, UK.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 124 124 14
PDF Downloads 38 38 4