Water conductivity of arctic zone soils (Spitsbergen)

Open access

Abstract

The water conductivity of arctic zone soils derived in different micro-relief forms was determined. The greatest water conductivity at the 0-5 cm depth for the higher values of water potentials (> -7 kJ m-3) was shown by tundra polygons (Brunic-Turbic Cryosol, Arenic) - 904-0.09 cm day-1, whereas the lowest were exhibited by Turbic Cryosols - 95-0.05 cm day-1. Between -16 and -100 kJ m-3, the water conductivity for tundra polygons rapidly decreased to 0.0001 cm day-1, whereas their decrease for the other forms was much lower and in consequence the values were 0.007, 0.04, and 0.01 cm day-1 for the mud boils (Turbic Cryosol (Siltic, Skeletic)), cell forms (Turbic Cryosol (Siltic, Skeletic)), and sorted circles (Turbic Cryosol (Skeletic)), respectively. In the 10-15 cm layer, the shape of water conductivity curves for the higher values of water potentials is nearly the same as for the upper layer. Similarly, the water conductivity is the highest - 0.2 cm day-1 for tundra polygons. For the lower water potentials, the differences in water conductivity increase to the decrease of soil water potential. At the lowest potential the water conductivity is the highest for sorted circles - 0.02 cm day-1 and the lowest in tundra polygons - 0.00002 cm day-1.

Angiel M., 1994. Heat flux in selected polar soil in spring and summer (Hornsund, Spitsbergen). Polish Polar Res., 15, 51-70.

Bockheim J.G., 1980. Properties and classification of some soils in coarse textured glacial drift in the Arctic and Antarctic. Geoderma, 24, 45-49.

Chojnicki B.H., 2013. Spectral estimation of wetland carbon dioxide exchange. Int. Agrophys., 27, 1-14.

Fischer Z. and Skiba S., 1993. Some remarks about bioenergetic aspects of tundra soil. Polish Polar Res., 14, 345-355.

Hillel D., 1998. Environmental Soil Physics. Academic Press, San Diego-London-Toronto.

IUSS Working Group WRB, 2007. World Reference Base for Soil Resources-2006 (first update-2007). World Soil Resources Reports, No. 103, FAO Press, Rome, Italy.

Jahn R., Blume H.P., Asio V.B., Spaargaren O., and Schad P., 2006. Guidelines for Soil Description. FAO-ISRIC Press, Rome, Italy.

Kabala C. and Zapart J., 2012. Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago.Geoderma, 175-176, 9-20.

Kirkham M.B., 2014. Principles of Soil And Plant Water Relation. Elsevier, Amsterdam-New York-Londyn-Toronto.

Klimowicz Z., Chodorowski J., Melke J., Uziak S., and Bartmiński P., 2013. Soils. In: Geographical Environment of NW Part of Wedel Jarlsberg Land (Spitsbergen, Svalbard) (Eds P. Zagórski, M. Harasimiuk, J. Rodzik). UMCS Press, Lublin, Poland.

Kutilek M., 2011. Pore size distribution. In: Encyclopedia of Agrophysics (Eds J. Gliński, J. Horabik, J. Lipiec). Springer Press, Dordrecht-Heidelberg-London-New-York.

Kutilek M. and Nielsen D.R., 2010. Facts About Global Warming. Catena Press, Reiskirchen, Germany.

Lal R. and Shukla M.K., 2004. Principles of Soil Physics. Dekker Press, New York - Basel.

Melke J., Witkowska-Walczak B., and Bartmiński P., 2013. Water retention of arctic zone soils (Spitsbergen). Int. Agrophys., 27, 439-444.

Migała K., Wojtuń B., Szymański W., and Muskała P., 2014. Soil moisture and temperature variation under different types of tundra vegetation during the growing season: A case study from the Fuglebekken catchment, SW Spitsbergen. Catena, 116, 10-18.

Novak V., 2011. Evapotranspiration. In: Encyclopedia of Agrophysics (Eds J. Gliński, J. Horabik, J. Lipiec). Springer Press, Dordrecht-Heidelberg-London-New York.

Paltineau C., Chitu E., and Mateescu E., 2012. New trends for evaporation and climatic water deficit. Int. Agrophys., 26, 159-166.

Ryżak M. and Bieganowski A., 2013. Methodological aspects of determining soil particle-size distribution using the laser diffiraction method. J. Plant Nutr. Soil Sci.,174, 624-633.

Shein E.V. and Gonczarov W.M., 2007. Agrophysics (in Russian). Feniks Press, Rostov, Russia.

Sławiński C., 2003. Influence of soil solid phase parameters on values of hydraulic conducitivity coefficient (in Polish). Acta Agrophysica, 90, 5-75.

Sławiński C., Sobczuk H., Stoffregen H., Walczak R., and Wessolek G., 2002. Effect of data resolution on soil hydraulic conductivity prediction. J. Plant Nutr. Soil Sci., 165, 45-49.

Sławiński C., Walczak R.T., and Skierucha W., 2006. Error analysis of water conductivity coefficient measurement by instantaneous profile method. Int. Agrophysics, 20, 55-61.

Sławiński C., Witkowska-Walczak B., and Walczak R., 2004. Determination of Hydraulic Conductivity in Soil Porous Media. IA PAS Press, Lublin, Poland.

Sobczuk H., Plagge R., Walczak R., and Roth C., 1992. Laboratory equipment and calculation procedures to rapidly determine effect of hysteresis on soil hydrophysical properties under nonstationary conditions. Z. Pflanz. Bodenk., 155, 157-163.

Świtoniak M., Melke J., and Bartmiński P., 2014. The differences in cellulolytic activity of arctic soils of Calypsostranda, Spitsbergen. Polar Record, 2, 199-208.

Tedrow J.F.C., 1977. Soils of the Polar Landscape. Rutgers Univ. Press, New Brunswick, NJ, USA.

Trenberth K.E., Jones P.D., Ambenje P., Borariu R., Easterling D., Klein Tank A., Parker D., Rahimzadeh F., Renwick J.A., Rusticucci M., Soden B., and Zhai P., 2007. Observations: surface and atmospheric climate change. In: IPCC Climate Change, the Physical Science Basis, EU Press, Brussels, Belgium.

Van Genuchten M.Th. and Pachepsky Y., 2011. Hydraulic properties of unsaturated soils. In: Encyclopedia of Agrophysics (Eds J. Gliński, J. Horabik, J. Lipiec). Springer Press, Dordrecht-Heidelberg-London-New York.

Washburn A.L., 1980. Geocryology. Wiley Press, New York, USA.

Witkowska-Walczak B., Gliński J., and Sławiński C., 2012. Hydrophysical Properties of Soils. Polish Academy of Sciences Press, Lublin, Poland.

Witkowska-Walczak B. and Sławiński C., 2005. Unsaturated water conductivity and diffusivity in soil aggregates. Polish J. Soil Sci., 37(1), 11-22.

Youngs E.G., 2008. Steady water flow through unsaturated aggregated porous materials. Transp. Porous Media, 71, 147-159.

Zadeh G.E. and Bayat H., 2012. Pedotransfer functions capacibility to simulate behaviour of cmectic soils in estimation of various soil water retention curves. Polish J. Soil Sci., 45(2), 105-128.

Zagórski P., Gajek G., Demczuk P., 2012. The influence of glacier systems of polar catchments on functioning of the coastal zone (Recherchefjorden, Svalbard). Zeitschrift für Geomorphologie, 56, 101-122.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 80 6
PDF Downloads 47 47 4