Biases in methane chamber measurements in peatlands

Open access

Abstract

The paper presents results of CH4 emission measurements at peatland with the application of the dynamic chamber technique. The measurements were conducted in two types of chambers differing in shape, height, volume and technology used to assure their tightness. The study tested how the following factors: 1) forced chamber headspace mixing or its absence, 2) mistakes of the person conducting measurements, 3) improper application of linear technique for calculating CH4 fluxes, and 4) simulated air sampling typical for static chambers, influence the significance of errors and the underestimation rate of CH4 fluxes measured in situ. It was indicated that chamber headspace mixing allows estimating methane fluxes with a smaller error than in the case of measurements conducted without mixing, and CH4 fluxes in such conditions can be 47 to 58% higher (depending on the chamber type) than in a chamber without fans. Using dynamic chambers and a fast analyzer to measure methane fluxes allows shortening the methane measurement process to a few minutes. On the other hand, using static chambers for methane flux measurements may lead to 70% underestimation of the calculated flux.

Beckmann M., Sheppard S.K., and Lloyd D., 2004. Mass spectrometric monitoring of gas dynamics in peat monoliths: effects of temperature and diurnal cycles on emissions. Atmospheric Environ., 38, 6907-6913.

Chojnicki B.H., 2013. The spectral estimation of wetland carbon dioxide exchange. Int. Agrophys., 27, 1-8.

Chojnicki B.H.,MichalakM.,AcostaM., JuszczakR., AugustinJ., Droesler M., and Olejnik J., 2010. Measurements of carbon dioxide fluxes by chamber method at Rzecin wetland ecosystem in Poland. Polish J. Environ. Stud., 19(2), 283-291.

Chojnicki B.H., Urbaniak M., Józefczyk D., Augustin J., andOlejnik J., 2007. Measurement of gas and heat fluxes a Rzecin wetland. In: Wetlands: Monitoring, Modelling and Management (Ed. T. Okruszko), Taylor and Francis Group Press, London, UK.

Christiansen J.R., Korhonen J., Juszczak R., Giebels M., andPihlatie M., 2011. Assessing the effects of chamber placement, manual sampling and headspace mixing onCH4 fluxes in a laboratory experiment. Plant Soil, 343, 171-185.

Conen F. and Smith K.A., 2000. An explanation of linear increases in gas concentration under closed chambers used to measure gas exchange between soil and the atmosphere. Eur. J. Soil Sci., 51, 111-117.

Davidson E.A., Savage K., Verchot L.V., and Navarro R., 2002. Minimizing artefacts and biases in chamber-based measurements of soil respiration. Agric. For. Met., 113, 21-37.

Eulenstein F., Leoeny J.,Chojnicki B.H.,KêdzioraA., and OlejnikJ., 2005. Analysis of the interrelation between the heat balance structure, type of plant cover and weather conditions. Int. Agrophysics, 19, 125-130.

Forbrich I.,Kutzbach L., HormannA., andWilmking M., 2010. A comparison of linear and exponential regression for estimating diffusive CH4 fluxes by closed-chambers in peatlands. Soil Biol. Biochem., 42, 507-515.

Goodrich J.P., Varner R.K., Frolking S., Duncan B.N., andCrill P.M., 2011. High-frequency measurements of methane ebullition over a growing season at a temperate peatland site. Geophys. Res. Letters, 38(7), 1-5.

Haapanala S., Rinne J., Pystynen K.H., Hellen H., Hakola H.,and Riutta T., 2006. Measurements of hydrocarbon emissions from boreal fen using the REA technique. Biogeosci., 3, 103-112.

Hutchinson G.L. and Livingston G.P., 2001. Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. Eur. J. Soil Sci., 52, 675-682.

Juszczak R., Acosta M., and Olejnik J., 2012a. Comparison of daytime and nighttime ecosystem respiration measured by the closed chamber technique on temperate mire in Poland. Polish J. Environ. Stud., 21(3), 643-658.

Juszczak R., Humphreys E., Acosta M., Michalak-GalczewskaM., Kayzer D., and Olejnik J., 2012b. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil, DOI 10.1007/s11104-012-1441-y

Kroon P.S.,HensenA.,Van denBulkW.C.M., Jongejan P.A.C.,and Vermeulen A.T., 2008. The importance of reducing the systematic error duet o non-linearity in N2O flux measurements by static chambers. Nutr. Cycl. Agroecosys., 82, 175-186.

Kutzbach L., Schneider J., Sachs T., Giebels M., Nykänen H.,Shurpali N.J.,Martikainen P.J.,Alm J., and WilmkingM.,2007. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosci., 4, 1005-1025.

Livingston G.P., Hutchinson G.L., and Spartalian K., 2005. Diffusion theory improves chamber-based measurements of trace gas emissions. Geophys. Res. Lett., 32, L24817.

Olejnik J., Eulenstien F., Kêdziora A., and Werner A., 2001. Comparison of daily evapotranspiration rates obtained from water balance model and modified Bowen's ratio method. Int. Agrophysics, 15, 37-49.

Pihlatie M., Christiansen J. R., Aaltonen H., Korhonen J.,Nordbo A., Rasilo T., Benanti G., Giebels M., Helmy M.,Hirvensalo J., Jones S., Juszczak R., Klefoth R., Lobo doR. Vale, Rosa A. P., Schreiber P., Serça D., Vicca S., WolfB., and Pumpanen J., 2013. Comparison of static chambers to measure CH4 emissions from soils. Agric. Forest Meteorol., 171-172, 124-136.

Pumpanen J.,Kolari P., Ilvesniemi H.,MinkkinenK., VesalaT.,Niinisto S., Lohila A., Larmola T., Morero M., PihlatieM., Janssens I., Yuste J.C.,Grunzweig J.M., Reth S., SubkeJ.A., Savage K., Kutsch W., Ostreng G., Ziegler W.,Anthoni P., Lindroth A., and Hari P., 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric. For. Met., 123, 159-176.

Rinne J., Riutta T., Pihlatie M., Aurela M., Haapanala S.,Tuovinen J-P., Tuittila E-S., and Vesala T., 2007. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus, 59(3), 449-457.

Strack M., Waller MF., and Waddington J., 2005. Dynamics of biogenic gas bubbles in peat and their effects on peatland biogeochemistry. Global Biogeochem. Cycles, 19, 1-9.

Tokida T.,MizoguchiM., Miyazaki T.,Kagemoto A., NagataO.,and Hatano R., 2007. Episodic release of methane bubbles frompeatland during spring thaw.Chemosphere, 70, 165-171.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 163 163 22
PDF Downloads 41 41 6