Dielectric spectroscopy in agrophysics

Open access

Dielectric spectroscopy in agrophysics

The paper presents scientific foundation and some examples of agrophysical applications of dielectric spectroscopy techniques. The aim of agrophysics is to apply physical methods and techniques for studies of materials and processes which occur in agriculture. Dielectric spectroscopy, which describes the dielectric properties of a sample as a function of frequency, may be successfully used for examinations of properties of various materials. Possible test materials may include agrophysical objects such as soil, fruit, vegetables, intermediate and final products of the food industry, grain, oils, etc. Dielectric spectroscopy techniques enable non-destructive and non-invasive measurements of the agricultural materials, therefore providing tools for rapid evaluation of their water content and quality. There is a limited number of research in the field of dielectric spectroscopy of agricultural objects, which is caused by the relatively high cost of the respective measurement equipment. With the fast development of modern technology, especially in high frequency applications, dielectric spectroscopy has great potential of expansion in agrophysics, both in cognitive and utilitarian aspects.

Agilent, 2000. Understanding the fundamental principles of vector network analysis. Application Note, 14, USA.

Agilent, 2006. Basics of measuring the dielectric properties of materials. Application Note, 32, USA.

Agilent, 2008a. Agilent 85070E dielectric probe kit 200MHz to 50 GHz. Technical Overview, 12, USA.

Agilent, 2008b. Solutions for measuring permittivity and permeability with LCR Meters and impedance analyzers. Application Note, 28, USA.

Asami K., 2002. Characterization of heterogeneous systems by dielectric spectroscopy. Prog. Polymer Sci., 27, 1617-1659.

Bogena H., Huisman J. A., Oberdorster C., and Vereecken H., 2007. Evaluation of a low-cost soil water content sensor for wireless network applications. J. Hydrol., 344, 32-42.

Bohigas X., Amigó R., and Tejada J., 2008. Characterization of sugar content in yoghurt by means of microwave spectroscopy. Food Res. Int. J., 41, 104-109.

Bohigas X. and Tejada J., 2009. Dielectric properties of acetic acid and vinegar in the microwave frequencies range 1-20 GHz. J. Food Eng., 94, 46-51.

Castro-Giráldez M., Fito P. J., Chenoll C., and Fito P., 2010. Development of a dielectric spectroscopy technique for the determination of apple (Granny Smith) maturity. Innovative Food Sci. Emerging Technol., 11, 749-754.

Cataldo A., Piuzzi E., Cannazza G., De Benedetto E., and Tarricone L., 2010. Quality and anti-adulteration control of vegetable oils through microwave dielectric spectroscopy. Measurement, 43, 1031-1039.

Chełkowski A., 1993. Physics of Dielectrics (in Polish). PWN Press, Warsaw, Poland.

Chen R. P., Chen Y. M., Xu W., and Yu X., 2010. Measurement of electrical conductivity of pore water in saturated sandy soils using time domain reflectometry (TDR) measurements. Can. Geotechnical J., 47, 197-206.

Debye P. J. W., 1929. Polar Molecules. Dover Press, New York, USA.

Dorigo W. A., Wagner W., Hohensinn R., Hahn S., Paulik C., Xaver A., Gruber A., Drusch M., Mecklenburg S., van Oevelen P., Robock A., and Jackson T., 2011. The international soil moisture network: a data hosting facility for global in situ soil moisture measurements. Hydrology Earth System Sci. Discussions, 15, 1675-1698.

Durham G. N., 2003. Using TDR technology for earthwork compaction quality control. Presentation to the California Geotechnical Engineers Association, Sacramento, CA, USA.

Friedman S. P., 2005. Soil properties influencing apparent electrical conductivity: a review. Computers Electronics Agric., 46, 45-70.

Garcia A., Torres J. L., De Blas M., De Francisco A., and Illanes R., 2004. Dielectric characteristics of grape juice and wine. Biosys. Eng., 88, 343-349.

Guo W., Liu Y., Zhu X., and Wang S., 2011a. Temperature-dependent dielectric properties of honey associated with dielectric heating. J. Food Eng., 102, 209-216.

Guo W., Zhu X., Nelson S. O., Yue R., Liu H., and Liu Y., 2011b. Maturity effects on dielectric properties of apples from 10 to 4500 MHz. LWT - Food Sci. Technol., 44, 224-230.

Guo W., Zhu X., Yue R., Liu H., and Liu Y., 2011c. Dielectric properties of Fuji apples from 10 to 4 500 MHz during storage. J. Food Proces. Preserv., 35, 884-890.

Guo W., Nelson S. O., Trabelsi S., and Kays S. J., 2007a. Dielectric properties of honeydew melons and correlation with quality. J. Microwave Power Electromag. Energy, 41, 44-54.

Guo W., Nelson S. O., Trabelsi S., and Kays S. J., 2007b. 10 - 1800 MHz dielectric properties of fresh apples during storage. J. Food Eng., 83, 562-569.

Hasted J. B., 1973. Aqueous Dielectrics. Chapman and Hall Press, London, UK.

Hlaváčová Z., 2005. Utilization of electric properties of granular and powdery materials. Int. Agrophysics, 19, 209-213.

Içier F. and Baysal T., 2004. Dielectric properties of food materials - 2: measurement techniques. Critical Reviews Food Sci. Nutr., 44, 473-478.

Janik G., 2008. Spatial variability of soil moisture as information on variability of selected physical properties of soil. Int. Agrophysics, 22, 35-43.

Kaatze U., 2005. Electromagnetic wave interactions with water and aqueous solutions. In: Electromagnetic Aquametry (Ed. K. Kupfer). Springer Press, Berlin-Heidelberg-New York.

Kaatze U., 2007. Non-conducting and conducting reference liquids for the calibration of dielectric measurement systems. Proc. 7th Conf. ISEMA on Electromagnetic Wave Interaction with Water and Moist Substances (Ed. S. Okamura). April 15-18, Hamamatsu, Japan.

Kaatze U., 2008. Perspectives in dielectric measurement techniques for liquids. Measurement Sci. Technol., 19, 112001.

Kachel-Jakubowska M. and Szpryngiel M., 2008. Influence of drying condition on quality properties of rapeseed. Int. Agrophysics, 22, 327-331.

Kerr Y. H., 2006. Soil moisture from space: Where are we? Hydrogeology J., 15, 117-120.

Kiviharju K., Salonen K., Moilanen U., and Eerikäinen T., 2008. Biomass measurement online: the performance of in situ measurements and software sensors. J. Industrial Microbiol. Biotechnol., 35, 657-65.

Kraszewski A. 2001. Microwave aquametry: an effective tool for nondestructive moisture sensing. Subsurface Sensing Technol. Appl., 2, 347-362.

Kraszewski A. and Nelson S. O., 1989. Composite model of the complex permittivity of cereal grain. J. Agric. Eng. Res., 43, 211-219.

Kupfer K. and Trinks E., 2005. Simulations and experiments for detection of moisture profiles with tdr in a saline environment. In: Electromagnetic Aquametry (Ed. K. Kupfer). Springer Press, Berlin-Heidelberg-New York.

Lewicki P. P., 2004. Water as the determinant of food engineering properties. A review. J. Food Eng., 61, 483-495.

Lizhi H., Toyoda K., and Ihara I., 2008. Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. J. Food Eng., 88, 151-158.

Lizhi H., Toyoda K., and Ihara I., 2010. Discrimination of olive oil adulterated with vegetable oils using dielectric spectroscopy. J. Food Eng., 96, 167-171.

Malicki M. A., Plagge R., Renger M., and Walczak R. T., 1992. Application of time-domain reflectometry (TDR) soil moisture miniprobe for the determination of unsaturated soil water characteristics from undisturbed soil cores. Irrigation Sci., 13, 65-72.

Malicki M. A., Plagge R., and Roth C. H., 1996. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Eur. J. Soil Sci., 47, 357-366.

Malicki M. A. and Skierucha W., 1989. A manually controlled TDR soil moisture meter operating with 300 ps rise-time needle pulse. Irrigation Sci., 10, 153-163.

Malicki M. A. and Skierucha W., 2002. Electrical measurement of soil moisture by TDR method (in Polish). Acta Agrophysica, 72, 117-124.

Malicki M. A. and Walczak R. T., 1999. Evaluating soil salinity status from bulk electrical conductivity and permittivity. Eur. J. Soil Sci., 50, 505-514.

Markx G. H. and Davey C. L., 1999. The dielectric properties of biological cells at radiofrequencies: applications in biotechnology. Enzyme Microbial Technol., 25, 161-171.

Michałek R., 2006. Agrophysics in the structure of science (in Polish). Acta Agrophysica, 142, 1061-1067.

Nelson S. O., 1987. Models for the dielectric constant of cereal grains and soybeans. J. Microwave Power Electromagnetic Energy, 22, 35-39.

Nelson S. O., 1996. Review and assessment of radio-frequency microwave energy for stored-grain insect control. Transactions of the ASAE, 39, 1475-1484.

Nelson S. O., 2010. Fundamentals of dielectric properties measurements and agricultural applications. J. Microwave Power Electromagnetic Energy, 44, 98-113.

Nelson S. O. and Datta A. K., 2001. Dielectric properties of food materials and electric field interactions. In: Handbook of Microwave Technology for Food Applications (Eds A. K. Datta, R. C. Anantheswaran). Dekker Press, New York, USA.

Nelson S. O., Forbus W., and Lawrence K., 1994. Permittivities of fresh fruits and vegetables at 0.2-20 GHz. J. Microwave Power Electromagnetic Energy, 29, 81-93.

Nelson S. O., Kraszewski A., Lawrence K. C., and Trabelsi S., 1999. Fifteen years of research on moisture content determination in cereal grains. In: Electromagnetic Wave Interaction with Water and Moist Substances (Eds A. Kraszewski, K. C. Lawrence), Athens, GA, USA.

Nelson S. O. and Trabelsi S., 2006. Dielectric spectroscopy of wheat from 10 MHz to 1.8 GHz. Measurement Sci. Technol., 17, 2294-2298.

Nelson S. O. and Trabelsi S., 2009. Dielectric properties of agricultural products and applications. ASABE Annual Int. Meeting, June 21-24, Reno, NV, USA.

Nelson S. O., Trabelsi S., and Kays S. J., 2006. Dielectric spectroscopy of honeydew melons from 10 MHz to 1.8 GHz for quality sensing. Transactions of the ASABE, 49, 1977-1982.

Nesvadba P., Houška M., Wolf W., Gekas V., Jarvis D., Sadd P. A., and Johns A. I., 2004. Database of physical properties of agro-food materials. J. Food Eng., 61, 497-503.

Nunes A. C., Bohigas X., and Tejada J., 2006. Dielectric study of milk for frequencies between 1 and 20 GHz. J. Food Eng., 76, 250-255.

Pavlik Z., Fiala L., and Cerny R., 2008. Determination of moisture content of hygroscopic building materials using time domain reflectometry. J. Appl. Sci., 8, 1732-1737.

Pavlik Z., Jirickova M., Cerny R., Sobczuk H., and Suchorab Z., 2006. Determination of moisture diffusivity using the time domain reflectometry (TDR) method. J. Building Physics, 30, 59-70.

Paz A., Thorin E., and Topp G. C., 2010. Dielectric mixing models for water content determination in woody biomass. Wood Sci. Technol., 45, 249-259.

Piuzzi E., Cataldo A., and Catarinucci L., 2009. Enhanced reflectometry measurements of permittivities and levels in layered petrochemical liquids using an ‘in-situ’ coaxial probe. Measurement, 42, 685-696.

Piyasena P., Dussault C., Koutchma T., Ramaswamy H., and Awuah G., 2003. Radio frequency heating of foods: principles, applications and related properties - a review. Critical Reviews Food Sci. Nutrition, 43, 587-606.

Ryynänen S., 1995. The electromagnetic properties of food materials: a review of the basic principles. J. Food Eng., 26, 409-429.

Seneviratne S. I., Corti T., Davin E. L., Hirschi M., Jaeger E. B., Lehner I., Orlowsky B., and Teuling A. J., 2010. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Reviews, 99, 125-161.

Shang J. Q., Rowe R. K., Umana J. A., and Scholte J. W., 1999. A complex permittivity measurement system for undisturbed/compacted soils. Geotechnical Testing J., 22, 165-174.

Skierucha W., 2000. Accuracy of soil moisture measurement by TDR technique. Int. Agrophysics, 14, 417-426.

Skierucha W., 2009. Temperature dependence of time domain reflectometry - measured soil dielectric permittivity. J. Plant Nutrition Soil Sci., 172, 186-193.

Skierucha W. and Malicki M. A., 2004. TDR method for the measurement of water content and salinity of porous media (Ed. W. Skierucha). IA PAS Press, Lublin, Poland.

Skierucha W., Sławiński C., Wilczek A., and Alokhina O., 2010. The technical implementation of a soil moisture, salinity and temperature monitoring system in Polesie National Park and Shatsk National Nature Park. In: The Future of Hydrogenic Landscapes in European Biosphere Reserves (Eds T. J. Chmielewski, D. Piasecki), Lublin, Poland.

Skierucha W., Usowicz B., Walczak R. T., and Wilczek A., 2006. Spatial distribution of moisture and heat properties in soil determined by ground and satellite measurements. Proc. 6th SMOS Workshop, May 15-17, Lingby, Denmark.

Skierucha W., Walczak R. T., and Wilczek A., 2004. Comparison of open-ended coax and TDR sensors for the measurement of soil dielectric permittivity in microwave frequencies. Int. Agrophysics, 18, 355-362.

Skierucha W. and Wilczek A., 2010. A FDR sensor for measuring complex soil dielectric permittivity in the 10-500 MHz frequency range. Sensors, 10, 3314-3329.

Skierucha W., Wilczek A. and Alokhina O., 2008a. Calibration of a TDR probe for low soil water content measurements. Sensors and Actuators A: Physical, 147, 544-552.

Skierucha W., Wilczek A., Horyński M., and Sumorek A., 2008b. Determination of electromechanical properties of dusts obtained from cereal grain. Transactions of the ASABE, 51, 177-184.

Topp G. C., Davis J. L. and Annan A. P., 1980. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Res. Res., 16, 574-582.

Trabelsi S., Kraszewski A., and Nelson S. O., 1998a. A microwave method for on-line determination of bulk density and moisture content of particulate materials. IEEE Trans. Instrumentation Measurement, 47, 127-132.

Trabelsi S., Kraszewski A., and Nelson S. O., 1998b. New density-independent calibration function for microwave sensing of moisture content in parcitulate materials. IEEE Trans. Instrumentation Measurement, 47, 613-622.

Tys J., Rybacki R., and Malczyk P., 2003. Sources for contamination of rapeseed with benzo(a)pyrene. Int. Agrophysics, 17, 131-135.

Usowicz B., Marczewski W., Lipiec J., Usowicz J. B., Sokołowska Z., Dąbkowska-Naskręt H., Hajnos M., and Łukowski M. I., 2009. Soil moisture spatial distribution at the SMOS Cal/Val Campaign POLESIE (AO-3275) in Poland. Proc. SMOS Cal/Val Workshop, March 11-13, Lisboa, Portugal.

Venkatesh M. S. and Raghavan G. S. V., 2004. An overview of microwave processing and dielectric properties of agri-food materials. Biosys. Eng., 88, 1-18.

Venkatesh M. S. and Raghavan G. S. V., 2005. An overview of dielectric properties measuring techniques. Can. Biosys. Eng., 47, 15-30.

Wang S., 2003. Dielectric properties of fruits and insect pests as related to radio frequency and microwave treatments. Biosys. Eng., 85, 201-212.

Wang S., Monzon M., Johnson J. A., Mitcham E. J., and Tang J., 2007. Industrial-scale radio frequency treatments for insect control in walnuts. Postharvest Biol. Technol., 45, 240-246.

Wilczek A., Skierucha W., and Szypłowska A., 2011. Influence of moisture and salinity of soil on its dielectric permittivity. Acta Agrophysica, 197, 5-87.

Zajíček R., Oppl L., and Vrba J., 2008. Broadband measurement of complex permittivity using reflection method and coaxial probes. Radioeng., 17, 14-19.

Zhu X., Guo W., and Wu X., 2012. Frequency- and temperature-dependent dielectric properties of fruit juices associated with pasteurization by dielectric heating. J. Food Eng., 109, 258-266.

International Agrophysics

The Journal of Institute of Agrophysics of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2017: 1.242
5-year IMPACT FACTOR: 1.267

CiteScore 2017: 1.38

SCImago Journal Rank (SJR) 2017: 0.435
Source Normalized Impact per Paper (SNIP) 2017: 0.849

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 304 304 21
PDF Downloads 125 125 9