Energy Cost of Running Under Hypogravity in Well-Trained Runners and Triathletes: A Biomechanical Perspective

O. Ueberschär 1 , 2 , D. Fleckenstein 1 , 3 , F. Warschun 1 , N. Walter 1 , J. C. Wüstenfeld 1 , 4 , B. Wolfarth 1 , 4 , and M. W. Hoppe 5 , 6
  • 1 Institute for Applied Training Science (IAT), , Leipzig, Germany
  • 2 Magdeburg-Stendal University of Applied Sciences, , Magdeburg, Germany
  • 3 German Athletics Association, , Leipzig, Germany
  • 4 Department of Sports Medicine, Humboldt University / Charité – Universitätsmedizin, Berlin
  • 5 Department of Movement and Training Science, University of Wuppertal, Wuppertal, Germany
  • 6 Department of Orthopaedics, Trauma and Hand Surgery, Klinikum Osnabrück GmbH, Osnabrück, Germany


Hypogravity treadmills have become a popular training tool in distance running and triathlon. Counter-intuitively, tibial acceleration load is not attenuated by hypogravity unloading during running, while, equally surprisingly, leaps become flatter instead of higher. To explain these effects from a biomechanical perspective, recently developed an energetic model for hypogravity running and validated it with recreational athletes at a constant jogging speed. The present study was conducted to refine that model for competitive athletes at relevant running speeds of 12–22 km h−1 and gravity levels of 100 %, 80 % and 60 %. Based on new experimental data on 15 well-trained runners in treadmill tests until volitional exhaustion, the enhanced semi-empirical model well describes energy expenditure and the observed biomechanical effects of hypogravity running. Remarkably, anaerobic contributions led to an increase in energy cost per meter for speeds above 16–18 km h−1 (p < 0.001), irrespective of hypogravity unloading. Moreover, some converging trends were observed that might reflect general adaptations in running motor control for optimization of efficiency. In essence, the outcome of this research might help sports scientists and practitioners to design running programs for specific training stimuli, e.g. conditioning of anaerobic energy metabolism.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Barnes, K. R., & Janecke, J. N. (2017). Physiological and Biomechanical Responses of Highly Trained Distance Runners to Lower-Body Positive Pressure Treadmill Running. Sports Med Open, 3(1), 41. doi:10.1186/s40798-017-0108-x

  • Barnes, K. R., & Kilding, A. E. (2015). Running economy: measurement, norms, and determining factors. Sports Med Open, 1(1), 8. doi:10.1186/s40798-015-0007-y

  • Beneke, R., Beyer, T., Jachner, C., Erasmus, J., & Hütler, M. (2004). Energetics of karate kumite. European Journal of Applied Physiology, 92(4), 518-523. doi:10.1007/s00421-004-1073-x

  • Beneke, R., & Hütler, M. (2005). The effect of training on running economy and performance in recreational athletes. Med Sci Sports Exerc, 37(10), 1794-1799. doi:10.1249/01.mss.0000176399.67121.02

  • Beneke, R., & Leithäuser, R. M. (2017). Energy Cost of Running Related to Running Intensity and Peak Oxygen Uptake. Deutsche Zeitschrift für Sportmedizin, 68(9), 196-202.

  • Bentley, D. J., Newell, J., & Bishop, D. (2007). Incremental exercise test design and analysis: implications for performance diagnostics in endurance athletes. Sports Med, 37(7), 575-586. doi:10.2165/00007256-200737070-00002

  • Borg, G. (1970). Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med, 2(2), 92-98.

  • Cohen, J. (1973). Eta-Squared and Partial Eta-Squared in Fixed Factor Anova Designs. Educational and Psychological Measurement, 33(1), 107-112. doi:10.1177/001316447303300111

  • di Prampero, P. E. (1981). Energetics of muscular exercise. Rev Physiol Biochem Pharmacol, 89, 143-222.

  • Donelan, J. M., & Kram, R. (2000). Exploring dynamic similarity in human running using simulated reduced gravity. J Exp Biol, 203(Pt 16), 2405-2415.

  • Farina, K. A., Wright, A. A., Ford, K. R., Wirfel, L. A., & Smoliga, J. M. (2017). Physiological and Biomechanical Responses to Running on Lower Body Positive Pressure Treadmills in Healthy Populations. Sports Med, 47(2), 261-275. doi:10.1007/s40279-016-0581-2

  • Fleckenstein, D., Ueberschär, O., Wüstenfeld, J. C., & Wolfarth, B. (2018). Physiological and metabolic responses to lower body positive pressure treadmill running. German Journal of Sports Medicine, 70(9).

  • Hamacher, D., Hamacher, D., Taylor, W. R., Singh, N. B., & Schega, L. (2014). Towards clinical application: repetitive sensor position re-calibration for improved reliability of gait parameters. Gait & posture, 39(4), 1146-1148. doi:10.1016/j.gaitpost.2014.01.020

  • Hollander, K., Riebe, D., Campe, S., Braumann, K.-M., & Zech, A. (2014). Effects of footwear on treadmill running biomechanics in preadolescent children. Gait & posture, 40(3), 381-385. doi:10.1016/j.gaitpost.2014.05.006

  • Karatsidis, A., Bellusci, G., Schepers, H. M., de Zee, M., Andersen, M. S., & Veltink, P. H. (2016). Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture. Sensors (Basel), 17(1). doi:10.3390/s17010075

  • Karatsidis, A., Richards, R. E., Konrath, J. M., van den Noort, J. C., Schepers, H. M., Bellusci, G., . . . Veltink, P. H. (2018). Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset. Journal of NeuroEngineering and Rehabilitation, 15(1), 78. doi:10.1186/s12984-018-0419-2

  • Kline, J. R., Raab, S., Coast, J. R., Bounds, R. G., McNeill, D. K., & de Heer, H. D. (2015). Conversion table for running on lower body positive pressure treadmills. J Strength Cond Res, 29(3), 854-862. doi:10.1519/jsc.0000000000000658

  • Lacour, J. R., & Bourdin, M. (2015). Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol, 115(4), 651-673. doi:10.1007/s00421-015-3115-y

  • Lusk, G. (1924). ANIMAL CALORIMETRY: Twenty-Fourth Paper. ANALYSIS OF THE OXIDATION OF MIXTURES OF CARBOHYDRATE AND FAT. Journal of Biological Chemistry, 59(1), 41-42.

  • Margaria, R. (1968). Positive and negative work performances and their efficiencies in human locomotion. Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie, 25(4), 339-351. doi:10.1007/BF00699624

  • McNeill, D. K., de Heer, H. D., Williams, C. P., & Coast, J. R. (2015). Metabolic accommodation to running on a body weight-supported treadmill. Eur J Appl Physiol, 115(5), 905-910. doi:10.1007/s00421-014-3071-y

  • McNeill, D. K., Kline, J. R., de Heer, H. D., & Coast, J. R. (2015). Oxygen consumption of elite distance runners on an anti-gravity treadmill(R). J Sports Sci Med, 14(2), 333-339.

  • Mercer, J. A., & Chona, C. (2015). Stride length–velocity relationship during running with body weight support. Journal of Sport and Health Science, 4(4), 391-395. doi:10.1016/j.jshs.2015.01.003

  • Minetti, A. E., Moia, C., Roi, G. S., Susta, D., & Ferretti, G. (2002). Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol (1985), 93(3), 1039-1046. doi:10.1152/japplphysiol.01177.2001

  • Moran, M. F., Rickert, B. J., & Greer, B. K. (2017). Tibial Acceleration and Spatiotemporal Mechanics in Distance Runners During Reduced-Body-Weight Conditions. J Sport Rehabil, 26(3), 221-226. doi:10.1123/jsr.2015-0141

  • Munoz Diaz, E., Kaiser, S., & Bousdar Ahmed, D. (2018). Height Error Correction for Shoe-Mounted Inertial Sensors Exploiting Foot Dynamics. Sensors (Basel), 18(3). doi:10.3390/s18030888

  • Polet, D. T., Schroeder, R. T., & Bertram, J. E. A. (2017). Reducing gravity takes the bounce out of running. The Journal of Experimental Biology, 221. doi:10.1242/jeb.162024

  • Polet, D. T., Schroeder, R. T., & Bertram, J. E. A. (2018). Correction: Reducing gravity takes the bounce out of running (doi:10.1242/jeb.162024). The Journal of Experimental Biology, 221(17).

  • Richardson, J. T. E. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135-147. doi:

  • Shaw, A. J., Ingham, S. A., & Folland, J. P. (2014). The valid measurement of running economy in runners. Med Sci Sports Exerc, 46(10), 1968-1973. doi:10.1249/mss.0000000000000311

  • Squadrone, R., & Gallozzi, C. (2009). Biomechanical and physiological comparison of barefoot and two shod conditions in experienced barefoot runners. J Sports Med Phys Fitness, 49(1), 6-13.

  • Strohrmann, C., Harms, H., Kappeler-Setz, C., & Troster, G. (2012). Monitoring kinematic changes with fatigue in running using body-worn sensors. IEEE Trans Inf Technol Biomed, 16(5), 983-990. doi:10.1109/titb.2012.2201950

  • Thomson, A., Einarsson, E., Witvrouw, E., & Whiteley, R. (2017). Running speed increases plantar load more than per cent body weight on an AlterG® treadmill. J Sports Sci, 35(3), 277-282. doi:10.1080/02640414.2016.1163401

  • Ueberschär, O., Fleckenstein, D., Warschun, F., Kränzer, S., Walter, N., & Hoppe, M. W. (2019). Measuring biomechanical loads and asymmetries in junior elite long-distance runners through triaxial inertial sensors. Sports Orthopeadics and Traumatology, 35(3). doi:10.1016/j.orthtr.2019.06.001

  • Ueberschär, O., Fleckenstein, D., Warschun, F., Walter, N., & Hoppe, M. W. (2019). Case report on lateral asymmetries in two junior elite long-distance runners during a high-altitude training camp Sports Orthopaedics and Traumatology, 35(3). doi:10.1016/j.orthtr.2019.06.002

  • Ueberschär, O., Fleckenstein, D., Wüstenfeld, J. C., Warschun, F., Falz, R., & Wolfarth, B. (2019). Running on the hypogravity treadmill AlterG® does not reduce the magnitude of peak tibial impact accelerations. Sports Orthopaedics and Traumatology, 35(3).

  • Zagatto, A. M., Leite, J. V., Papoti, M., & Beneke, R. (2016). Energetics of Table Tennis and Table Tennis-Specific Exercise Testing. Int J Sports Physiol Perform, 11(8), 1012-1017. doi:10.1123/ijspp.2015-0746


Journal + Issues