Open Access

Decision Support System for Mitigating Athletic Injuries


Cite

The purpose of the present study was to demonstrate an inductive approach for dynamically modelling sport-related injuries with a probabilistic graphical model. Dynamic Bayesian Network (DBN), a well-known machine learning method, was employed to illustrate how sport practitioners could utilize a simulatory environment to augment the training management process. 23 University of Iowa female student-athletes (from 3 undisclosed teams) were regularly monitored with common athlete monitoring technologies, throughout the 2016 competitive season, as a part of their routine health and well-being surveillance. The presented work investigated the ability of these technologies to model injury occurrences in a dynamic, temporal dimension. To verify validity, DBN model accuracy was compared with the performance of its static counterpart. After 3 rounds of 5-fold cross-validation, resultant DBN mean accuracy surpassed naïve baseline threshold whereas static Bayesian network did not achieve baseline accuracy. Conclusive DBN suggested subjectively-reported stress two days prior, subjective internal perceived exertions one day prior, direct current potential and sympathetic tone the day of, as the most impactful towards injury manifestation.

eISSN:
1684-4769
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Computer Sciences, Databases and Data Mining, other, Sports and Recreation, Physical Education