Linear and Nonlinear Prediction Models Show Comparable Precision for Maximal Mean Speed in a 4x1000 m Field Test

J. M. Jäger 1 , J. Kurz 1 ,  and H. Müller 1
  • 1 Institute of sport science, Justus-Liebig-University Gießen, , Gießen, Germany

Abstract

Maximal oxygen uptake (VO2max) is one of the most distinguished parameters in endurance sports and plays an important role, for instance, in predicting endurance performance. Different models have been used to estimate VO2max or performance based on VO2max. These models can use linear or nonlinear approaches for modeling endurance performance. The aim of this study was to estimate VO2max in healthy adults based on the Queens College Step Test (QCST) as well as the Shuttle Run Test (SRT) and to use these values for linear and nonlinear models in order to predict the performance in a maximal 1000 m run (i.e. the speed in an incremental 4×1000 m Field Test (FT)). 53 female subjects participated in these three tests (QCST, SRT, FT). Maximal oxygen uptake values from QCST and SRT were used as (a) predictor variables in a multiple linear regression (MLR) model and as (b) input variables in a multilayer perceptron (MLP) after scaling in preprocessing. Model output was speed [km·h−1] in a maximal 1000 m run. Maximal oxygen uptake values estimated from QCST (40.8 ± 3.5 ml·kg−1·min−1) and SRT (46.7 ± 4.5 ml·kg−1·min−1) were significantly correlated (r = 0.38, p < 0.01) and maximal mean speed in the FT was 12.8 ± 1.6 km·h−1. Root mean squared error (RMSE) of the cross validated MLR model was 0.89 km·h−1 while it was 0.95 km·h−1 for MLP. Results showed that the accuracy of the applied MLP was comparable to the MLR, but did not outperform the linear approach.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abut, F., & Akay, M. F. (2015). Machine learning and statistical methods for the prediction of maximal oxygen uptake: recent advances. Medical Devices: Evidence and Research, 8, 369-379. doi:

    • Crossref
    • Export Citation
  • Akay, M. F., Zayid, E. I. M., Aktürk, E., & George, J. D. (2011). Artificial neural networkbased model for predicting VO2max from a submaximal exercise test. Expert Systems with Applications, 38, 2007-2010. doi:

    • Crossref
    • Export Citation
  • ACSM. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine & Science in Sports & Exercise, 43(7), 1334-1359. doi:

    • Crossref
    • Export Citation
  • Black, N. E., Vehrs, P. R., Fellingham, G. W., George, J. D., & Hager, R. (2016) Prediction of VO2max in Children and Adolescents Using Exercise Testing and Physical Activity Questionnaire Data. Research Quarterly for Exercise and Sport, 87(1), 89-100, doi:

    • Crossref
    • Export Citation
  • Bird, S. R., Theakston, S. C., Owen, A. & Nevill, A. M. (2003). Characteristics Associated With 10-km Running Performance Among a Group of Highly Trained Male Endurance Runners Age 21-63 Years. Journal of Aging and Physical Activity, 11, 333-350. doi:

    • Crossref
    • Export Citation
  • Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.

  • Darr, K. C, Bassett, D. R, Morgan, B. J., Thomas, D. P. (1988). Effects of age and training status on heart rate recovery after peak exercise. American Journal of Physiol, 254(2), H340-343.

  • Deuster, P., & Heled, Y. (2008). Testing for maximal aerobic power. In P. H. Seidenberg, & A. I. Beutler (Eds.), The sports medicine resource manual (pp. 520-528). Philadelphia: Elsevier. doi:

    • Crossref
    • Export Citation
  • Dimpka, U. (2009). Post-exercise heart rate recovery: an index of cardiovascular fitness. Journal of Exercise Physiology online, 12(1), 19-22.

  • Edelmann-Nusser, J., Hohmann, A., & Henneberg, B. (2002). Modeling and Prediction of Competitive Performance in Swimming Upon Neural Networks. European Journal of Sport Science, 2(2) [electronic resource].

  • Günther, F., & Fritsch, S. (2010). neuralnet: Training of neural networks. The R Journal, 1(2), 30-38.

  • Haff, G. G., & Dumke, C. (2012). Laboratory manual for exercise physiology. Champain, IL: Human Kinetics.

  • Held, T. (2000). Überprüfung der Ausdauerleistungsfähigkeit. Der 4x1000-m-Lauftest (mobilepraxis) [Assessing endurance performance. The 4x1000-m-Test]. mobile - Die Fachzeitschrift für Sport, 6, 5-9.

  • Held, T., Steiner, R., Hübner, K., Tschopp, M., Peltola, K., & Marti, B. (2000). Selbst gewählte submaximale Laufgeschwindigkeiten als Prädiktoren des Dauerleistungsvermögens [Selft-selected submaximal running velocities as predictors of endurance capacity]. Schweizerische Zeitschrift für Sportmedizin und

  • Sporttraumatologie, 2(48), 64-69.

  • Jäger, J. M., Kurz, J., & Müller, H. (2016). Predicting maximum speed in a 4x1000 m FieldTest based on estimated VO2max values from Shuttle Run Test and Queens College Step Test. In D. Saupe, T. Dahmen, C. Widmann, I. Baiker, M. Gratkowski, S. Wolf, & R. Bertschinger (Eds.), Proceedings dvs-Workshop Modelling in Endurance Sports (pp. 20-24). Konstanz: Universität Konstanz. URI http://nbnresolving.de/urn:nbn:de:bsz:352-0-371586

  • Kattan, A., Abdullah, R., & Geem, Z. W. (2011). Artificial neural network training and software implementation techniques. New York: Nova Science.

  • Léger, L. A., & Lambert, J. (1982). A maximal multistage 20-m shuttle run test to predict VO2max. European Journal of Applied Physiology, 49(1), 1-12.

  • Léger, L. A., Mercier, D., Gadoury, C., & Lambert, J. (1988). The multistage 20 metre shuttle run test for aerobic fitness. Journal of Sports Sciences, 6(2), 93-101. doi:

    • Crossref
    • Export Citation
  • Marshall, M. R., Coe, D. P., & Pivarnik, J. M. (2014). Development of a Prediction Model to Predict VO2peak in Adolescent Girls Using the Bruce Protocol to Exhaustion. Research Quarterly for Exercise and Sport, 85(2), 251-256, doi:

    • Crossref
    • Export Citation
  • Mayorga-Vega, D., Aguilar-Soto, P., & Viciana, J. (2015). Criterion-Related Validity of the 20-M Shuttle Run Test for Estimating Cardiorespiratory Fitness: A Meta-Analysis. Journal of Sports Science and Medicine, 14(3), 536-547.

  • Maszczyk, A., Rocznoik, R., Waskiewicz, Z., Czuba, M., Mikolajec, K., Zajac, A. & Stanula, A. (2012). Application of regression and neural models to predict competitive swimming performance. Perceptual and Motor Skills, 114(2), 610-626. doi:

    • Crossref
    • Export Citation
  • Maszczyk, A., Zajac, A., & Ryguła, I. (2011). A neural network model approach to athlete selection. Sports Engineering, 13(2), 83-93. doi:

    • Crossref
    • Export Citation
  • McArdle, W. D., Katch, F. I., Pechar, G. S., Jacobson, L., & Ruck, S. (1972). Reliability and interrelationships between maximal oxygen intake, physical work capacity and steptest scores in college women. Medicine & Science in Sports & Exercise, 4(4), 182-186. doi:

    • Crossref
    • Export Citation
  • McLaughlin, J. E., Howley, E. T., Bassett Jr., D. R., Thompson, D. L., & Fitzhugh, E. C. (2010). Test of the Classic Model for Predicting Endurance Running Performance. Medicine & Science in Sports & Exercise, 42(5), 991-997. doi:

    • Crossref
    • Export Citation
  • Newsholme, E. A., Blomstrand, E., & Ekblom, B. (1992). Physical and mental fatigue: Metabolic mechanisms and importance of plasma amino acids. British medical bulletin, 48(3), 477-495.

  • O’Brian, R. M. (2007). A caution regarding rules of thumb for variance inflation factors. Quality & Quantity, 41, 673-690. doi:

    • Crossref
    • Export Citation
  • Schöllhorn, W. I., Jäger, J. M., & Janssen, D. (2008). Artificial neural network models of sports motion. In Y. Hong, & R. Bartlett, Handbook of Biomechanics and Human Movement Science (pp. 50-64). London: Routledge.

  • Shave, R., & Franco, A. (2006). The physiology of endurance training. In G. P. Whyte, The physiology of training (pp. 61-84). Philadelphia, PA: Elsevier.

  • Stickland, M. K., Petersen, S. R., & Bouffard, M. (2003). Prediction of maximal aerobic power from the 20-m multi-stage shuttle run test. Canadian Journal of Applied Physiology, 2(28), 272-282.

  • van Someren, K. A. (2006). The physiology of anaerobic endurance training. In G. P. Whyte, The physiology of training (pp. 85-115). Philadelphia, PA: Elsevier.

  • Verikas, A., Gelzinis, A., & Bacauskiene, M. (2011). Mining data with random forests: A survey and results of new tests. Pattern recognition, 44, 330-349.

  • R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Ramsbottom, R., Brewer, J., & Williams, C. (1988). A progressive shuttle run test to estimate maximal oxygen uptake. British Journal of Sports Medicine, 22(4), 141-144.

  • Takeshima, N., & Tanaka, K. (1995). Prediction of endurance running performance for middle-aged and older runners. British Journal of Sports Medicine, 29(1), 20-23. doi:

    • Crossref
    • Export Citation
OPEN ACCESS

Journal + Issues

Search