Effect of Magnetic Field Dependent Viscosity on the Unsteady Ferrofluid Flow Due to a Rotating Disk

  • 1 Department of Mathematics, College of Engineering Studies, University of Petroleum and Energy Studies Dehradun, India

Abstract

The effect of magnetic field dependent viscosity on ferrofluid flow due to a rotating disk is studied in the presence of a stationary magnetic field. The results for velocity profiles for various values of MFD viscosity parameter are shown graphically. These results are compared with the ordinary case when the applied magnetic field is absent. Besides, the shear stress on the wall of the disk and its surface is calculated numerically.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Feynman R.P., Leighton R.B. and Sands M. (1963): Lecturers on Physics. − Addison-Wesley Reading, MA 1.

  • [2] Shliomis M.I. (2004): Ferrofluids as thermal ratchets. − Physical Review Letters, vol.92, No.18, 188901.

  • [3] Odenbach S. (2002): Magneto Viscous Effects in Ferrofluids. − Berlin: Springer-Verlag.

  • [4] Neuringer J.L. and Rosensweig R.E. (1964): Magnetic fluids. − Physics of Fluids, vol.7, 1927.

  • [5] Verma P.D.S. and Singh M. (1981): Magnetic fluid flow through porous annulus. − Int. J. Non-Linear Mechanics, vol.16, No.3/4, pp.371-378.

  • [6] Verma P.D.S. and Vedan M.J. (1979): Steady rotation of a sphere in a paramagnetic fluid. − Wear, vol.52, pp.201-218.

  • [7] Verma P.D.S. and Vedan M.J. (1978): Helical flow of ferrofluid with heat conduction. − Jour. Math.Phy. Sci., vol.12, No.4, pp.377-389.

  • [8] Rosensweig R.E. (1985): Ferrohydrodynamics. − Cambridge University Press.

  • [9] Schlichting H. (1960): Boundary Layer Theory. − New York: McGraw-Hill Book Company.

  • [10] Karman V. (1921): Uber laminare and turbulente Reibung. − Z. Angew. Math. Mech. I, pp.232-252.

  • [11] Cochran W.G. (1934): The flow due to a rotating disc. − Proc. Camb. Phil. Sot., vol.30, pp.365-375.

  • [12] Benton E.R. (1966): On the flow due to a rotating disk. − J. Fluid Mech., vol.24, No.4, pp.781-800.

  • [13] Attia H.A. (1998): Unsteady MHD flow near a rotating porous disk with uniform suction or injection. − Journal of Fluid Dynamics Research, vol.23, pp.283-290.

  • [14] Mithal K.G. (1961): On the effects of uniform high suction on the steady flow of a non-Newtonian liquid due to a rotating disk. − Quart J. Mech. and Appl. Math.XIV, pp.401-410.

  • [15] Attia H.A. and Aboul-Hassan A.L. (2004): On hydromagnetic flow due to a rotating disk. − Applied Mathematical Modelling, vol.28, pp.1007-1014.

  • [16] Venkatasubramanian S. and Kaloni P.N. (1994): Effect of rotation on the thermo-convective instability of a horizontal layer of ferrofluids. − International Journal of Engineering Sciences, vol.32, No.2, pp.237-256.

  • [17] Belyaev A.V. and Simorodin B.L. (2009): Connvection of a ferrofluid in an alternating magnetic field. − Jour. of Applied Mechanics and Technical Physics, vol.50, No.4, pp.558-565.

  • [18] Sekar R., Vaidyanathan G. and Ramanathan A. (1993): The ferroconvection in fluid saturating a rotating densely packed porous medium. − International Journal of Engineering Sciences, vol.31, No.2, pp.241-250.

  • [19] Attia H. (2009): Steady flow over a rotating disk in porous medium with heat transfer. − Nonlinear Analysis: Modelling and Control, vol.14, No.1, pp.21-26.

  • [20] Frusteri F. and Osalusi E. (2007): On MHD and slip flow over a rotating porous disk with variable properties. − Int. Comm. in Heat and Mass Transfer, vol.34, pp.492-501.

  • [21] Nanjundappy C.E., Shivakumara I.S. and Arunkumar R. (2010): Benard-Marangoni ferroconvection with magnetic field dependent viscosity. − Journal of Magnetism and Magnetic Materials, vol.322, pp.2256-2263.

  • [22] Ram P., Bhandari A. and Sharma K. (2010): Effect of magnetic field-dependent viscosity on revolving ferrofluid. − Journal of Magnetism Magnetic Materials, vol.322, No.21, pp.3476-3480.

  • [23] Ram P. and Bhandari A. (2013): Negative viscosity effects on ferrofluid flow due to a rotating disk. − Int. Journal of Applied Electromagnetics and Mechanics, vol.41, No.3, pp.467-478.

  • [24] Ariel P.D. (2003): On the flow of an elastic-viscous fluid near a rotating disk. − Journal of Computational and Applied Mathematics, vol.154, pp.1-25.

OPEN ACCESS

Journal + Issues

Search