Outcome of Nanofluid Flow Containing Arbitrary Shape Nanoparticles Induced by a Permeable Stretching Sheet

  • 1 Dept. of Mathematics, S.A. Jaipuria College, 700005, Kolkata, India
  • 2 Dept. of Mathematics, Jadavpur University, 700032, Kolkata, India


In this work we have discussed the impact of thermal radiation on heat transfer to nanofluid flow over an unsteady permeable stretching sheet using various types of arbitrary shape nanoparticles of Copper (Cu), Silver (Ag), Alumina (Al2O3), and Titania Oxide (TiO2) in the base fluid. Suitable transformations have been employed to build ODEs from the partial differential equations. Numerical results are therefore obtained particularly for cylindrical shape and spherical shape nanoparticles. Our analysis substantiates that the velocity and temperature profiles increases with enhanced thermal radiation parameter. Further, Nusselt number is more advanced for the nanofluid that contains cylindrical shape nanoparticles as compared to spherical shape nanoparticles.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Choi S.U.S. (1995): Enhancing thermal conductivity of fluids with nanoparticles. − Dev. Appl. Non-Newton Flows, vol.66, 99.

  • [2] Sarkar A., Das K. and Kundu P.K. (2016): On the onset of bioconvection in nanofluid containing gyrotactic microorganisms and nanoparticles saturating a non-Darcian porous medium. − J. Mol. Liq., vol.223, pp.725-733.

  • [3] Raju C.S.K. and Sandeep N. (2017): Unsteady Casson nanofluid flow over a rotating cone in a rotating frame filled with ferrous nanoparticles: A numerical study. − J. Magnetism and Magnetic Materials, vol.421, pp.216-224.

  • [4] Chakraborty T., Das K. and Kundu P.K. (2017): Ag-water nanofluid flow over an inclined porous plate embedded in a non-Darcy porous medium due to solar radiation. − J. Mech. Sci. Tech., vol.31, No.5, pp.2443-2449.

  • [5] Sheikholeslami M. (2018): Numerical investigation for CuO-H 2 O nanofluid flow in a porous channel with magnetic field using mesoscopic method. − J. Mol. Liq., vol.249, pp.739-746.

  • [6] Sheikholeslami M. and Shehzad S.A. (2018): Numerical analysis of Fe 3 O 4H 2 O nanofluid flow in permeable media under the effect of external magnetic source. − Int. J. Heat Mass Trans., vol.118, pp.182-192.

  • [7] Salari M., Malekshah E.H. and Malekshah M.H. (2018): Natural convection in a rectangular enclosure filled by two immiscible fluids of air and Al 2 O 3 -water nanofluid heated partially from side walls. − Alexandria Eng. J., vol.57, pp.1401-1412.

  • [8] Eiamsa-ard S. and Wongcharee K. (2018): Convective heat transfer enhancement using Ag-water nanofluid in a micro-fin tube combined with non-uniform twisted tape. − Int. J. Mech. Sci., vol.146-147, pp.337-354.

  • [9] Timofeeva E.V., Routbort J.L. and Singh D. (2009): A benchmark study on the thermal conductivity of nanofluids. − J. Appl. Phy., vol.106, 094312.

  • [10] Murshed S.M.S., Nieto de Castro C.A., Lourenco M.J.V., Lopes M.L.M. and Santos F.J.V. (2011): A review of boiling and convective heat transfer with nanofluids. Renewable and Sustainable Energy Reviews, vol.15, No.5, pp.2342-2354.

  • [11] Das K., Duari P.R. and Kundu P.K. (2016): Effects of magnetic field on an unsteady mixed convection flow of nanofluids containing spherical and cylindrical nanoparticles. − J. Heat Trans., ASME, vol.138, No.6, pp.061901-7.

  • [12]. Mandy A. (2012): Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet. − Nuclear Engg. Design, vol.249, pp.248-255.

  • [13] Kundu P.K. and Sarkar A. (2017): Multifarious slips perception on unsteady Casson nanofluid flow impinging on a stretching cylinder in the presence of solar radiation. − Eur. Phys. J. Plus, vol.132, pp.144.

  • [14] Kai-Long Hsiao (2017): Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. − Int. J. Heat Mass Trans., vol.112, pp.983-990.

  • [15] Reddy P.S. and Chamkha A. (2017): Heat and mass transfer characteristics of MHD three-dimensional flow over a stretching sheet filled with water-based alumina nanofluid. − Int. J. Num. Methods Heat Fluid Flow, vol.28, No.3, pp.532-546.

  • [16] Das K., Sarkar A. and Kundu P.K. (2017): Cu-water nanofluid flow induced by a vertical stretching sheet in presence of a magnetic field with convective heat transfer. − vol.6, No.3, pp.206-2013.

  • [17] Gireesha B.J., Mahantheshc B., Thammanna G.T. and Sampathkumar P.B. (2018): Hall effects on dusty nanofluid two-phase transient flow past a stretching sheet using KVL model. − J. Mol. Liq., vol.256, pp.139-147.

  • [18] Ghadikolaei S.S., Hosseinzadeh Kh., Yassari M., Sadeghi H. and Ganji D.D. (2018): Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet. − Therm. Sci. Eng. Prog., vol.5, pp.309-316.

  • [19] Nayak M.K., Akbar N.S., Pandey V.S., Khan Z.H. and Tripathi D. (2017): 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. − Powder Tech., vol.315, pp.205-215.

  • [20] Valipour P., Moradi R. and Aski F.S. (2017): CNT-water nanofluid thermal radiation heat transfer over a stretching sheet considering heat generation. − J. Mol. Liq., vol.237, pp.242-246.

  • [21] Zeeshan A., Shehzad N., Ellahi R. and Sultan Z. Alamri (2018): Convective Poiseuille flow of Al 2 O 3 -EG nanofluid in a porous wavy channel with thermal radiation. − Neural Comput. Applic., vol.30, No.11, pp.3371-3382.

  • [22] Kumar K.G., Ramesh G.K., Gireesha B.J. and Gorla R.S.R. (2018): Characteristics of Joule heating and viscous dissipation on three-dimensional flow of Oldroyd B nanofluid with thermal radiation. − Alexandria Eng. J., vol.57, pp.2139-2149.

  • [23] Sheikholeslami M. and Rokni H.B. (2018): Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. − Int. J. Heat Mass Trans., vol.118, pp.823-831.

  • [24] Nayak M.K., Shaw S., Pandey V.S. and Chamkha A.J. (2018): Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation. − Indian J. Phy., vol.92, No.8, pp.1017-1028.

  • [25] Daniel Y.S., Aziz Z.A., Ismail Z. and Salah F. (2018): Impact of thermal radiation on electrical MHD flow of nanofluid over nonlinear stretching sheet with variable thickness. − Alexandria Eng. J, vol.57, No.3, pp.2187-2197

  • [26] Qayyum S., Hayat T. and Alsaedi (2018): Thermal radiation and heat generation/absorption aspects in third grade magneto-nanofluid over a slendering stretching sheet with Newtonian conditions. − Physica B: Condensed Matter, vol.537, pp.139-149.

  • [27] Tiwari R.K. and Das M.K. (2007): Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. − Int. J. Heat Mass Trans, vol.50, pp.2002-2018.

  • [28] Oztop H.F. and Abu-Nada E. (2008): Numerical study of natural convection in partially heated rectangular enclosers with nanofluids. − Int. J. Heat Fluid Flow, vol.29, pp.1326-1336.

  • [29] Xie H., Wang J., Xi T. and Liu Y. (2002): Thermal conductivity of suspensions containing nanosized SiC particles. − International Journal Thermophysics, vol.23, No.2, pp.571-580.

  • [30]. Murshed S.M.S., Leong K.C. and Yang C. (2005): Enhanced thermal conductivity of TiO2-water based nanofluids. − Int. Jour Therm. Sciences, vol.44, No.4, pp.367-373.

  • [31] Hamilton R.L. and Crosser O.K. (1962): Thermal conductivity of heterogeneous two component systems. − Industrial and Engineering Chemistry Fundamentals, vol.1, No.3, pp.182-191.

  • [32] Cortell R. (2008): Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition. − Appl. Math. Comput., vol.206, pp.832-840.


Journal + Issues