The Characterization of the Stress Fields Near a Crack Tip for a Compact Specimen for Elastic-Plastic Materials Dominated by the Plane Strain State

Open access

Abstract

The paper presents a comprehensive analysis of the stress field near a crack tip for a compact specimen dominated by the plane strain state using the finite element method. The analysis also includes the calculation of some parameters of in-plane constraints, both for small and large strain assumptions. It discusses the influence of the material characteristic, relative crack length and external load for the stress field, and the in-plane constraint parameter. The approximation formulas for some in-plane constraint parameters are presented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] ASTM (2005): ASTM E 1820-05 Standard Test Method for Measurement of Fracture Toughness. – American Society for Testing and Materials.

  • [2] ASTM (2011): ASTM E1921-11 Standard test method for determining of reference temperature T0 for ferritic steels in the transition range. – American Society for Testing and Materials.

  • [3] BS 5762 (1979): Methods for crack opening displacement (COD) testing. – London: British Standards Institute.

  • [4] BS 7448 (1991): Part 1. Fracture mechanics toughness tests: Part 1 – Method for determining of KIccritical CTOD and critical J values of metallic materials. – London: British Standards Institute.

  • [5] PN-87/H-4335 Metals – Test method for measurement of the fracture toughness for plane strain conditions.

  • [6] Kornev V.M. and Demeshkin A.G. (2018): Quasi-brittle fracture of compact specimens with sharp notches and u-shaped cuts. – Journal of Applied Mechanics and Technical Physics vol.59 No.1 pp.120-131 DOI 10.1134/S0021894418010157.

  • [7] Kayamori Y. and Kawabata T. (2017): Evaluation of rotational deformation in compact specimens for CTOD fracture toughness testing. – Procedia Structural Integrity vol.5 pp.286-293 DOI 10.1016/j.prostr.2017.07.135.

  • [8] Doddamani S. and Kaleemulla M. (2017): Fracture toughness investigations of Al6061-graphite particulate composite using compact specimens – Frattura ed Integrità Strutturale vol.11 No.41 pp.484-490 DOI 10.3221/IGF-ESIS.41.60.

  • [9] Horstman R.T. Lieb K.C. Power B. Landes J.D. et al. (1979): Evaluation of the J integral for the compact specimen. – Journal of Testing and Evaluation vol.7 No.5 pp.264-269. DOI 10.1520/JTE10222J.

  • [10] Shivakumar N. and Newman J.C. (1992): Verification of effective thicknesses for side-grooved compact specimens. – Engineering Fracture Mechanics 43(2) 1992 DOI 10.1016/0013-7944(92)90125-X Source NTRS

  • [11] Hu J.M. Cheng J. Albrecht P. and Joyce J. (1989): Ductile Crack Extension in Compact Specimens at Limit Load. – DOI 10.1016/B978-0-08-034341-9.50047-4 In book: Proceedings of The 7th International Conference On Fracture (ICF7).

  • [12] Zhu X.-K. and Joyce J.A. (2012): Review of fracture toughness (G K J CTOD CTOA) testing and standardization. – Engineering Fracture Mechanics vol.85 pp.1–46 DOI:10.1016/j.engfracmech.2012.02.001

  • [13] O’Dowd N.P. and Shih C.F. (1991): Family of crack-tip fields characterized by a triaxiality parameter – I. Structure of Fields. – J. Mech. Phys. Solids vol.39 No.8 pp.989-1015.

  • [14] O’Dowd N.P. and Shih C.F. (1992): Family of crack-tip fields characterized by a triaxiality parameter – II. Fracture Applications. – J. Mech. Phys. Solids vol.40 No.5 pp.939-963.

  • [15] Yang S. Chao Y.J. and Sutton M.A. (1993): Higher order asymptotic crack tip fields in a power-law hardening material. – Engineering Fracture Mechanics vol.19 No.1 pp.1-20.

  • [16] Hutchinson J.W. (1968): Singular behaviour at the end of a tensile crack in a hardening material. – Journal of the Mechanics and Physics of Solids vol.16 No.1 pp.13-31.

  • [17] Rice J.R. and Rosengren G.F. (1968): Plane strain deformation near a crack tip in a power-law hardening material. – Journal of the Mechanics and Physics of Solids vol.16 No.1 pp.1-12.

  • [18] Neimitz A. Graba M. and Gałkiewicz J. (2007): An alternative formulation of the Ritchie-Knott-Rice local fracture criterion. – Engineering Fracture Mechanics vol.74 pp.1308-1322.

  • [19] Ritchie R.O. Knott J.F. Rice J.R. (1973): On the relationship between critical tensile stress and fracture toughness in mild steel. – Journal of the Mechanics and Physics of Solids vol.21 pp.395–410.

  • [20] Graba M. and Gałkiewicz J. (2007): Influence of the crack tip model on results of the finite element method. – Journal of Theoretical and Applied Mechanics Warsaw vol.45 No.2 pp.225-237.

  • [21] Graba M. (2011): The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for single edge notch plate in tension. – Archives of Civil and Mechanical Engineering vol.11 No.2 pp.301-319.

  • [22] Graba M. (2012): The influence of material properties and crack length on the Q-stress value near the crack tip for elastic-plastic materials for centrally cracked plate in tension. – J. Theor. Appl. Mech. vol.50 No.1 pp.23-46.

  • [23] Graba M. (2008): The influence of material properties on the Q-stress value near the crack tip for elastic-plastic materials. – Journal of Theoretical and Applied Mechanics vol.46 No.2 pp.269-290.

  • [24] Graba M. (2012): Catalogue of the numerical solutions for SEN(B) specimen assuming the large strain formulation and plane strain condition. – Archives of Civil and Mechanical Engineering Published by Elsevier vol.12 No.1 pp.29-40.

  • [25] FITNET Report (European Fitness-for-service Network) Edited by Kocak M. Webster S. Janosch J.J. Ainsworth R.A. and Koers R. Contract No. G1RT-CT-2001-05071 2006.

  • [26] Neimitz A. Dzioba I. Graba M. and Okrajni J. (2008): The assessment of the strength and safety of the operation high temperature components containing crack. – Kielce University of Technology Publishing House Kielce.

  • [27] Gałkiewicz J. and Graba M. (2006): Algorithm for determination σij˜(nθ)$\widetilde {{\sigma _{ij}}\}\left( {n\theta } \right)$ɛij˜(nθ)$\widetilde {{\varepsilon _i}_j\}\left( {n\theta } \right)$ dn(n θ) and In(n) functions in Hutchinson-Rice-Rosengren solution and its 3D generalization. – Journal of Theoretical and Applied Mechanics vol.44 No.1 pp.19-30.

  • [28] Kumar V. German M.D. and Shih C.F. (1981): An engineering approach for elastic-plastic fracture analysis. – Electric Power Research Institute Inc. Palo Alto CA EPRI Report NP-1931.

  • [29] ADINA 8.8 ADINA (2011): User Interface Command Reference Manual – Volume I: ADINA Solids & Structures Model Definition. – Report ARD 11-2 ADINA R&D Inc..

  • [30] ADINA 8.8 ADINA (2011): Theory and Modeling GuideVolume I: ADINA Solids & Structures. – Report ARD 11-8 ADINA R&D Inc..

  • [31] Sumpter J.D.G. and Forbes A.T. (1992): Constraint Based Analysis of Shallow Cracks in Mild Steel. – TWI/EWI/IS International Conference on Shallow Crack Fracture Mechanics Test and Application M.G. Dawes Ed. Cambridge UK paper 7.

  • [32] Guo W. (1995): Elastoplastic Three Dimensional Crack Border Field – III. Fracture Parameters. – Engineering Fracture Mechanics vol.51 No.1 pp.51-71.

  • [33] Chauhan S. Chattopadhyay J. and Dutta B. K. (2016): Limit load equations for miniature single edge notched tensile specimens. – Transactions of the Indian Institute of Metals vol.69 No.2 pp.641-646.

  • [34] Graba M. (2013): Numerical verification of the limit load solutions for single edge notch specimen in tension. – Archives of Civil and Mechanical Engineering vol.13 No.1 pp.45-56.

  • [35] Graba M. (2016): Limit load solutions for SEN(T) specimens - 2D and 3D. – International Journal of Applied Mechanics and Engineering vol.21 No.3 pp.569-580.

  • [36] Anderson T.L. (2000): Fracture Mechanics - Fundamentals and Applications. – CRC Press Corporate Blvd. N.W. Boca Raton Florida 33431.

  • [37] Kudari S.K. Maiti B. and Ray K.K. (2007): The effect of specimen geometry on plastic zone size: A study using the J integral. – The Journal of Strain Analysis for Engineering Design vol.42 No.3 pp.125-136. https://doi.org/10.1243/03093247JSA252.

  • [38] Rice J.R. (1968): A path independent integral and the approximate analysis of strain concentration by notches and cracks. – Journal of Applied Mechanics vol.35 pp.379-386.

  • [39] Seweryn A. (2003): Numerical methods in fracture mechanics. – Biblioteka Mechaniki Stosowanej IPPT PAN Warszawa (in Polish).

  • [40] Graba M. (2012): Selected fracture criteria of elastic-plastic materials. – Mechanical Review No.12/2017 pp.24-31 (in Polish).

  • [41] Graba M. (2013): Extension of the concept of limit loads for 3D cases for a centrally cracked plate in tension. – Journal of Theoretical and Applied Mechanics vol.51 No.2 pp.349-362.

  • [42] R6 procedures (1997): Assessment of the integrity of structures containing defects. – Nuclear Electric-R6 Manuals Nuclear Electric Ltd Barnett Way Barnwood Gloucester GL4 3RS United Kingdom.

  • [43] BS 7910:2013+A1:2015 Guide to methods for assessing the acceptability of flaws in metallic structures. – Published by BSI Standards Limited 2015 ISBN 978 0 580 89564 7 http://www.google.pl/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwig8IWvqeLiAhUGtYsKHb-UD_MQFjABegQIBRAC&url=http%3A%2F%2Fgost-snip.su%2Fdownload%2Fbs_79102013_a12015_guide_to_methods_for_assessing_the_accept&usg=AOvVaw0oxHuneHFxxpgpRTGI8jgY

  • [44] Zhu X.-K. and Leis B.N. (2006): Bending modified J-Q theory and crack-tip constraint quantification. – Int. J. Fract. vol.141 No.1-2 pp.115-134.

  • [45] Tkach Y. and Burdekin F.M. (2012): A three-dimensional analysis of fracture mechanics test pieces of different geometries – Part 1 Stress-state ahead of the crack tip. – International Journal of Pressure Vessels and Piping pp.93-94:42-50.

  • [46] Tkach Y. and Burdekin F.M. (2012): A three-dimensional analysis of fracture mechanics test pieces of different geometries – Part 2 Constraint and material variations. – International Journal of Pressure Vessels and Piping pp.93-94:51-60.

  • [47] Mostafavi M. Smith D.J. and Pavier M.J. (2010): Reduction of measured toughness due to out-of-plane constraint in ductile fracture of aluminium alloy specimens. – Fatigue Fract. Eng. Mater Struct. vol.33 pp.724-739.

  • [48] Mostafavi M. Smith D.J. and Pavier M.J. (2011): Fracture of aluminium alloy 2024 under biaxial and triaxial loading. – Eng. Fract. Mech. vol.78 pp.1705-1716.

  • [49] Yang J. Wang G.Z. Xuan F.Z. and Tu S.T. (2013): Unified characterisation of in-plane and out-of-plane constraint based on crack-tip equivalent plastic strain. – Fatigue Fract. Eng. Mater. Struct. vol.36 pp.504-514.

  • [50] Mu M.Y. Wang G.Z. Xuan F.Z. and Tu S.T. (2017): Fracture assessment based on unified constraint parameter for pressurized pipes with circumferential surface cracks. – Eng. Fract. Mech. vol.175 pp.201-218.

  • [51] Xu J.Y. Wang G.Z. Xuan F.Z. and Tu S.T. (2018): Unified constraint parameter based on crack-tip opening displacement. – Eng. Fract. Mech. vol.200 pp.175-188.

Search
Journal information
Impact Factor


CiteScore 2018: 0.4

SCImago Journal Rank (SJR) 2018: 0.163
Source Normalized Impact per Paper (SNIP) 2018: 0.439

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 102 102 32
PDF Downloads 70 70 15