Effect of Rotation in an Orthotropic Elastic Slab

Open access


The fundamental equations of the two dimensional generalized thermoelasticity (L-S model) with one relaxation time parameter in orthotropic elastic slab has been considered under effect of rotation. The normal mode analysis is used to the basic equations of motion and heat conduction equation. Finally, the resulting equations are written in the form of a vector-matrix differential equation which is then solved by the eigenvalue approach. The field variables in the space time domain are obtained numerically. The results corresponding to the cases of conventional thermoelasticity CTE), extended thermoelasticity (ETE) and temperature rate dependent thermoelasticity (TRDTE) are compared by means of graphs.

[1] Bachher M., Sarkar N. and Lahiri A. (2015): Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources. – Meccanica, vol.50, pp.2167-2178.

[2] Biot M.A.(1956): Thermoelasticity and irreversible thermodynamics. – J. Appl. Phys., vol.27, pp.240-253.

[3] Das B. and Lahiri A. (2015): Generalized magnetothermoelasticity for isotropic media. – Journal of Thermal Stresses, vol.38, No.2, pp.210-228.

[4] Das N.C., Lahiri A. and Giri R.R. (1997): Eigenvalue approach to generalized thermoelasticity. – Indian J. Pure Appl. Math., vol.28, No.12, pp.1573-1594.

[5] Dhaliwal R.S. and Sherief H.H. (1980): Generalized thermoelasticity for anisotropic media. – Quart. Appl. Math., vol.33, pp.1-8.

[6] Green A.E. and Lindsay K.A. (1972): Thermoelasticity. – Journal of Elasticity, vol.2, pp.1-7.

[7] Ignaczak J. (1979): Uniqueness in generalized thermoelasicity. – Journal of Thermal Stresses, vol.2, pp.171-175.

[8] Ignaczak J. (1982): Uniqueness in generalized thermoelasicity with one relaxation time. – Journal of Thermal Stresses, vol.5, pp.275-263.

[9] Kar A. and Kanoria M. (2006): Thermoelastic interaction with energy dissipation in an infinitely extended thin plate containing a circular hole. – Far East J. Appl. Math., vol.24, pp.201-217.

[10] Lord H.W. and Shulman Y. (1967): A generalized dynamic theory of thermoelasticity. – J. Mech. Phys. Solids, vol.15, pp.299-309.

[11] Sherief H.H. (1987): On uniqueness and stablity in generalized thermoelasticity. – Quart Appl. Math. (USA), vol.44, pp.773-778.

[12] Sherief H.H. (1986): Fundamental solution of the generalized thermoelastic problem for the short times. – Journal of Thermal Stresses, vol.9, pp.151-164.

[13] Sherief H.H. and Anwar M.N. (1986): Problems in generalized thermoelasticity. – Journal of Thermal Stresses, vol.9, pp.165-181.

[14] Sherief H.H. and Dhaliwal R.S. (1980): A uniqueness theorem and a varational principle for generalized thermoelasticity. – Journal of Thermal Stresses, vol.3, pp.223-230.

[15] Tauchert T.R. and Akoz A.Y. (1974): Thermal stresses in an orthotropic elastic slab due to prescribed surface temperature. – J. Appl. Mech., vol.41 (Series E), pp.222-228.

[16] Dhaliwal R.S. and Singh A. (1980): Dynamic Coupled Thermoelasticity. – Hindustan Publ., Delhi.

International Journal of Applied Mechanics and Engineering

The Journal of University of Zielona Góra

Journal Information

CiteScore 2018: 0.4

SCImago Journal Rank (SJR) 2018: 0.163
Source Normalized Impact per Paper (SNIP) 2018: 0.439


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 209 173 7
PDF Downloads 127 117 8