Higher Viral Load and Prolonged Viral Shedding Period is Associated with Impaired Th17 Cell Response in Patients with H1N1 Influenza A

Open access


Objective To explore whether age, disease severity, cytokines and lymphocytes in H1N1 influenza A patients correlate with viral load and clearance.

Methods Total of 70 mild and 16 severe patients infected with H1N1 influenza A virus were enrolled in this study.

Results It was found that the patients under 14 years old and severe patients displayed significantly higher viral loads and prolonged viral shedding periods compared with the patients over 14 years old and mild patients, respectively (P < 0.05). Moreover, the patients under 14 years old and severe patients displayed significantly lower Th17 cell frequency than the patients over 14 years old and mild patients (P < 0.01). The viral shedding period inversely correlated with the frequency of IL-17+IFN-γ-CD4+ T cells. Additionally, the decreased concentration of serum TGF-β correlated with the decreased frequency of IL-17+IFN-γ-CD4+ T cells.

Conclusions Both younger and severe patients are associated with higher viral loads and longer viral shedding periods, which may partially be attributed to the impaired Th17 cell response.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Influenza A. (H1N1) - update 12. Geneva: World Health Organization 2009. (Accessed May 7 2009 at http://www.who.int/csr/don/2009_05_03a/en/index.html.)

  • 2. Novel Swine-Origin Influenza A (H1N1) Virus Investigation Team Dawood FS Jain S Finelli L Shaw MW Lindstrom S Garten RJ et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009; 360:2605-2615.

  • 3. Jamieson DJ Honein MA Rasmussen SA Williams JL Swerdlow DL Biggerstaff MS et al. H1N1 2009 influenza virus infection during pregnancy in the USA. Lancet 2009;374:451-458.

  • 4. Perez-Padilla R de la Rosa-Zamboni D Ponce de Leon S Hernandez M Quiñones-Falconi F Bautista E et al. Pneumonia and respiratory failure from swine-origin influenza A (H1N1) inMexico. N Engl J Med 2009;361:680-689.

  • 5. Chowell G Bertozzi SM Colchero MA Lopez-Gatell H Alpuche-Aranda C Hernandez M et al. Severe respiratory disease concurrent with the circulation of H1N1 influenza. N Engl J Med 2009;361:674-679.

  • 6. Peiris JS Poon LL Guan Y. Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans. J Clin Virol 2009;45:169-173.

  • 7. Lee N Chan PK Hui DS Rainer TH Wong E Choi KW et al. Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J Infect Dis 2009;200:492-500.

  • 8. Wilson NJ Boniface K Chan JR McKenzie BS Blumenschein WM Mattson JD et al. Development cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007;8:950-957.

  • 9. Smith GJ Vijaykrishna D Bahl J Lycett SJ Worobey M Pybus OG et al. Origins and evolutionary genomics of the 2009 swineorigin H1N1 influenza A epidemic. Nature 2009;459:1122-1125.

  • 10. Garten RJ Davis CT Russell CA Shu B Lindstrom S Balish A et al. Antigenic and genetic characteristics of swine-origin 2009 A (H1N1) influenza viruses circulating in humans. Science 2009;325:197-201.

  • 11. Dharan NJ Gubareva LV Meyer JJ Okomo-Adhiambo M McClinton RC Marshall SA et al. Infections with oseltamivirresistantinfluenza A (H1N1) virus in the United States. JAMA 2009;301:1034-1041.

  • 12. Munster VJ de Wit E van den Brand JM Herfst S Schrauwen EJ Bestebroer TM et al. Pathogenesis and transmission of swine-origin 2009 A (H1N1) influenza virus in ferrets. Science 2009;325:481-483.

  • 13. Hayden FG Pavia AT. Antiviral management of seasonal and pandemic influenza. J Infect Dis 2006;194:S119-126.

  • 14. Whitley RJ Hayden FG Reisinger KS Young N Dutkowski R Ipe D et al. Oral oseltamivir treatment of influenza in children. Pediatr Infect Dis J 2001;20:127-133.

  • 15. Sato M Hosoya M Kato K Suzuki H. Viral shedding in children with influenza virus infections treated with neuraminidase inhibitors. Pediatr Infect Dis J 2005;24:931-932.

  • 16. Kandun IN Tresnaningsih E Purba WH Lee V Samaan G Harun S et al. Factors associated with case fatality of human H5N1 virus infections in Indonesia: a case series. Lancet 2008;372:744-749.

  • 17. Hayden FG Treanor JJ Fritz RS Lobo M Betts RF Miller M et al. Use of the oral neuraminidase inhibitor oseltamivir in experimental human influenza: randomized controlled trials for prevention and treatment. JAMA 1999;282:1240-1246.

  • 18. Gooskens J Jonges M Claas EC Meijer A van den Broek PJ Kroes AM. Morbidity and mortality associated with nosocomial transmission of oseltamivir-resistant influenza A (H1N1) virus. JAMA 2009;301:1042-1046.

  • 19. Wei L Laurence A Elias KM O’Shea JJ. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 2007;282: 34605-34610.

  • 20. Bettelli E Carrier Y Gao W Korn T Strom TB Oukka M et al. Reciprocal developmental pathways for the generation of pathogenic effector Th17 and regulatory T cells. Nature 2006;441:235-238

  • 21. Veldhoen M Hocking RJ Atkins CJ Locksley RM Stochinger B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 2006;24:179-189.

  • 22. Sutton C Brereton C Keogh B Mills KH Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 2006;203:1685-1691.

  • 23. Acosta-Rodriguez EV Napolitani G Lanzavecchia A Sallusto F. Interleukins 1 beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 2007;8:942-949.

  • 24. Van Beelen AJ Zelinkova Z Taanman-Kueter EW Muller FJ Hommes DW Zaat SA et al. Stimulation of the intracellular bacterial sensor NOD2 programs dendritic cells to promote interleukin-17 production in human memory T cells. Immunity 2007;27:660-669.

  • 25. Stumhofer JS Laurence A Wilson EH Huang E Tato CM Johnson LM et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 2006;7:937-945.

  • 26. Batten M Li J Yi S Kljavin NM Danilenko DM Lucas S et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 2006;7:929-936.

  • 27. Qin H Wang L Feng T Elson CO Niyongere SA Lee SJ et al. TGF-beta promotes Th17 cell development through inhibition of SOCS3. J Immunol 2009;183:97-105.

  • 28. Lee YK Turner H Maynard CL Oliver JR Chen DQ Elson CO et al. Late developmental plasticity in the T helper 17 lineage. Immunity 2009;30:92-107.

  • 29. Santarlasci V Maggi L Capone M Frosali F Querci V De Palma R et al. TGF-beta indirectly favors the development of human Th17 cells by inhibiting Th1 cells. Eur J Immunol 2009;39:207-215.

  • 30. Curtis MM Way SS Wilson CB. IL-23 promotes the production of IL-17 by antigen-specific CD8 T cells in the absence of IL-12 and type-I interferons. J Immunol 2009;183:381-387.

  • 31. Volpe E Touzot M Servant N Marloie-Provost MA Hupé P Barillot E et al. Multiparametric analysis of cytokine-driven human Th17 differentiation reveals a differential regulation of IL-17 and IL-22 production. Blood 2009;114:3610-3614.

  • 32. Crowe CR Chen K Pociask DA Alcorn JF Krivich C Enelow RI et al. Critical role of IL-17RA in immunopathology of influenza infection. J Immunol 2009;183:5301-5310

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 70 5
PDF Downloads 90 72 3