Plant Diversity of The Mid Silurian (Lower Wenlock, Sheinwoodian) Terrestrial Vegetation Preserved in Marine Sediments from The Barrandian Area, The Czech Republic

Open access

Abstract

Plant mega- and microfossils are described from the middle Sheinwoodian of the Barrandian area. The material comes from the Loděnice locality and the same horizon as the earliest unequivocal land plant, Cooksonia barrandei LIBERTÍN, J.KVAČEK, BEK, ŽÁRSKÝ et ŠTORCH. Its age (432 Myr) is inferred from the associated graptolite fauna, including the zonal index graptolite Monograptus belophorus. Megafossils have clear similarity with Cooksonia, due to their dichotomised axes with slightly widened subtending axes bearing putative sporangia. They document some of the plant diversity that was in place when the first proven representative of the genus Cooksonia appeared, and together with dispersed spores they provide strong and important evidence that a diversified terrestrial ecosystem had developed on the Barrandian volcanic archipelago in the peri-Gondwanan realm by the end of the Sheinwoodian Stage of the Silurian Period.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Boyce C. K. (2008): How green was Cooksonia? The importance of size in understanding the early evolution of physiology in the vascular plant lineage. - Paleobiology 34: 179-194. https://doi.org/10.1666/0094-8373(2008)034[0179:HGWCTI]2.0.CO;2

  • Chlupáč I. (1987): Ecostratigraphy of Silurian trilobite assemblages of the Barrandian area. - Newsletters on Stratigraphy 17: 169-186. https://doi.org/10.1127/nos/17/1987/169

  • Chlupáč I. Havlíček V. Kukal Z. Kříž J. Štorch P. (1998): Palaeozoic of the Barrandian (Cambrian to Devonian). - Czech Geological Survey Prague 183 pp.

  • Cocks L. R. M. Torsvik T. H. (2006): European geography in a global context from the Vendian to the end of Palaeozoic. - In: Gee D. G. Stephenson R. A. (eds) European Lithosphere Dynamics. Memoirs Geological Society London 32: 83-95. https://doi.org/10.1144/GSL.MEM.2006.032.01.05

  • Edwards D. Feehan J. Smith D. G. (1983): A late Wenlock flora from Co. Tipperary Ireland. - Botanical Journal of the Linnean Society 86: 19-36. https://doi.org/10.1111/j.1095-8339.1983.tb00715.x

  • Fanning U. Richardson J. B. Edwards D. (1988): Cryptic evolution in an early land plants. - Evolutionary Trends in Plants 2(1): 13-24.

  • Edwards D. Wellman C. H. (2001): Embryophytes on land: the Ordovician to Lochkovian (Lower Devonian) record. - In: Gensel P. D. Edwards D. (eds) Plants Invade the Land. Evolutionary and Environmental Perspectives. Columbia University Press New York pp. 3-28. https://doi.org/10.7312/gens11160-003

  • Habgood K. S. Edwards D. Axe L. (2002): New perspective of Cooksonia from the Lower Devonian of the Welsh Borderland. - Botanical Journal of the Linnean Society 139: 339-359. https://doi.org/10.1046/j.1095-8339.2002.00073.x

  • Havlíček V. Štorch P. (1990): Silurian brachiopods and benthic communities in the Prague Basin (Czechoslovakia). - Rozpravy ÚÚG 48: 1-275.

  • Horný R. (1962): Das mittelböhmische Silur. - Geologie 11: 843-916.

  • Kraft P. Kvaček Z. (2017): Where the lycophytes come from? - A piece of the story from the Silurian of peri-Gondwana. - Gondwana Research 45: 180-190. https://doi.org/10.1016/j.gr.2017.02.001

  • Kraft P. Pšenička J. Sakala J. Frýda J. (2018): Initial plant diversifi cation and dispersal event in upper Silurian of the Prague Basin. - Palaeogeography Palaeoclimatology Palaeoecology 514: 144-155. https://doi.org/10.1016/j.palaeo.2018.09.034

  • Kříž J. (1991): The Silurian of the Prague Basin (Bohemia) - tectonic eustatic and volcanic controls on Facies and Faunal development. - Special Papers in Palaeontology 44: 179-203.

  • Kříž J. (1992): Silurian fi eld excursions: Prague Basin (Barrandian) Bohemia. - Geological series National Museum of Wales 13: 1-111.

  • Lang W. H. (1937): On the plant-remains from the Downtonian of England and Wales. - Philosophical Transactions of the Royal Society B: Biological Sciences 227: 245-291. https://doi.org/10.1098/rstb.1937.0004

  • Libertín M. Kvaček J. Bek J. Žárský V. Štorch P. (2018): Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous. - Nature Plants 4: 269-271. https://doi.org/10.1038/s41477-018-0140-y

  • Libertín M. Labuťa R. Dašková J. (2002): Nález nejstarších cévnatých rostlin v Českém masivu [The oldest vascular plants from the Bohemian Massif]. - Zprávy o geologických výzkumech v roce 2002: 127. (in Czech)

  • Loydell D. K. (2012): Graptolite biozone correlation charts. - Geological Magazine 149: 124-132. https://doi.org/10.1017/S0016756811000513

  • Morris J. L. Edwards D. Richardson J. B. Axe L. Davies K. L. (2012): Further insights into trilete spore producers from the Early Devonian (Lochkovian) of the Welsh Borderland U.K. - Review of Palaeobotany and Palynology 185: 35-36. https://doi.org/10.1016/j.revpalbo.2012.08.001

  • Obrhel J. (1962): Die Flora der Přídolí-Schichten (Budňany-Stufe) des mittelböhmischen Silurs. - Geologie 11: 83-97.

  • Schweitzer H. J. (1980): Die Gattungen Renalia Gensel und Psilophyton Dawson im Unterdevon des Rheinlandes. - Bonner paläobotanische Mitteilungen 6: 1-34.

  • Štorch P. (1994): Graptolite biostratigraphy of the Lower Silurian (Llandovery and Wenlock) of Bohemia. - Geological Journal 29: 137-165. https://doi.org/10.1002/gj.3350290204

  • Taylor T. N. Taylor E. L. Krings M. (2009): Palaeobotany. The biology and evolution of fossil plants (2nd edition). - Elsevier (Academic Press) Amsterdam 1230 pp.

  • Yurina A. L. (1969): Devonskaya fl ora Tsentral’nogo Kazakhstana [The Devonian fl ora of Central Kazakhstan] (Materialy po geologii Tsentral’nogo Kazakhstana vol. 8). - Izdatel’stvo Moskovskogo Universiteta Moskva 207 pp. (in Russian)

  • Zalasiewicz J. A. Taylor L. Rushton W. A. Loydell D. K. Rickards R. B. Williams M. (2009): Graptolites in British stratigraphy. - Geological Magazine 146: 785-850. https://doi.org/10.1017/S0016756809990434.

Search
Journal information
Impact Factor


CiteScore 2018: 0.72

SCImago Journal Rank (SJR) 2018: 0.347
Source Normalized Impact per Paper (SNIP) 2018: 0.376

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 123 123 12
PDF Downloads 98 98 5