Extinct Taxa of Exotestal Seeds Close to Austrobaileyales and Nymphaeales From the Early Cretaceous of Portugal

Open access


Early Cretaceous mesofossil floras from Portugal and North America include a surprising diversity of small, bitegmic angiosperm seeds with a hard exotestal seed coat. This study describes six different kinds of these seeds from three Portuguese mesofossil localities; Vale de Agua, Torres Vedras, and especially from Famalicão, which has yielded a flora exceptionally rich in exotestal seeds. All the seeds are almost smooth with a characteristic jigsaw puzzle-shaped surface pattern that is formed from the strongly undulate anticlinal walls of the sclerenchyma cells that comprise the exotesta. Several specimens have internal details preserved, including remains of a cellular nutritive tissue interpreted as endosperm, and a tiny embryo with two rudimentary cotyledons. Based on differences in details of the seed coat, and configuration of hilum and micropyle, the fossil seeds are assigned to six new genera, as six new species: Gastonispermum portugallicum gen. et sp. nov., Pazlia hilaris gen. et sp. nov., Pazliopsis reyi gen. et sp. nov., Reyispermum parvum gen. et sp. nov., Lusitanispermum choffatii gen. et sp. nov. and Silutanispermum kvacekiorum gen. et sp. nov. The characteristic exotestal cells with undulate anticlinal walls, details of the hilar and micropylar region, together with the tiny dicotyledonous embryos with rudimentary cotyledons, suggest close relationships to seeds of Nitaspermum and Tanispermum described previously from Early Cretaceous mesofossil floras from eastern North America. These exotestal seeds from Portugal and North America indicate the presence of diverse extinct early angiosperms close to the lineages that today include extant Austrobaileyales and Nymphaeales.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Collinson M. E. (1980): Recent and Tertiary seeds of the Nymphaeaceae sensu lato with a revision of Brasenia ovula (Brong.) Reid and Chandler. - Annals of Botany 46: 603-632. https://doi.org/10.1093/oxfordjournals.aob.a085958

  • Dinis J. L. Rey J. Cunha P. P. Callapez P. Pena Dos Reis R. (2008): Stratigraphy and allogenic controls and the western Portugal Cretaceous: an updated synthesis. - Cretaceous Research 29: 772-780. https://doi.org/10.1016/j.cretres.2008.05.027

  • Dorofeev P. I. (1974): Nymphaeales. - In: Takhtajan A. (ed.) Magnoliophyta fossila URSS. Nauka Leningrad pp. 52-85. (in Russian)

  • Eriksson O. Friis E. M. Pedersen K. R. Crane P. R. (2000): Seed size and dispersal systems of Early Cretaceous angiosperms from Famalicão Portugal. - International Journal of Plant Sciences 161: 319-329. https://doi.org/10.1086/314248

  • Floyd S. K. Friedman W. E. (2000): Evolution of endosperm developmental patterns among basal flowering plants. - International Journal of Plant Sciences 161: S57-S81. https://doi.org/10.1086/317579

  • Floyd S. K. Friedman W. E. (2001): Developmental evolution of endosperm in basal angiosperms: Evidence from Amborella (Amborellaceae) Nuphar (Nymphaeaceae) and Illicium (Illiciaceae). - Plant Systematics and Evolution 228: 153-169. https://doi.org/10.1007/s006060170026

  • Friedman W. E. Bachelier J. B. (2013): Seed development in Trimenia (Trimeniaceae) and its bearing on the evolution of embryo-nourishing strategies in early flowering plant. - American Journal of Botany 100: 906-915. https://doi.org/10.3732/ajb.1200632

  • Friedman W. E. Bachelier J. B. Hormaza J. I. (2012): Embryology in Trithuria submersa (Hydatellaceae) and relationships between embryo endosperm and perisperm in early-diverging flowering plants. - American Journal of Botany 99: 1083-1095. https://doi.org/10.3732/ajb.1200066

  • Friis E. M. Crane P. R. Pedersen K. R. (1997): Anacostia a new basal angiosperm from the Early Cretaceous of North America and Portugal with trichotomocolpate/ monocolpate pollen. - Grana 36: 225-244. https://doi.org/10.1080/00173139709362611

  • Friis E. M. Crane P. R. Pedersen K. R. (2011): Early flowers and angiosperm evolution. - Cambridge University Press Cambridge 596 pp. https://doi.org/10.1017/CBO9780511980206

  • Friis E. M. Crane P. R. Pedersen K. R. (2018a): Rightcania and Kvacekispermum: Early Cretaceous seeds from eastern North America and Portugal provide further evidence of the early chloranthoid diversification. - Fossil Imprint 74(1-2): 65-76. https://10.2478/if-2018-0006

  • Friis E. M. Crane P. R. Pedersen K. R. (2018b): Tanispermum a new genus of distinctive hemi-orthotropous to hemianatropous angiosperm seeds from the Early Cretaceous of eastern North America. - American Journal of Botany.

  • Friis E. M. Crane P. R. Pedersen K. R. (2018c): Fossil seeds with affinities to Austrobaileyales and Nymphaeales from the Early Cretaceous (early to middle Albian) of Virginia and Maryland U.S.A: new evidence for extensive extinction near the base of the angiosperm tree. - In: Krings M. Harper C. J. Cúneo N. R. Rothwell G. W. (eds) Transformative paleobotany. Academic Press London pp. 417-435.

  • Friis E. M. Crane P. R. Pedersen K. R. Stampanoni M. Marone F. (2015a): Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms. - Nature 528: 551-554. https://doi.org/10.1038/nature16441

  • Friis E. M. Grimm G. W. Mendes M. M. Pedersen K. R. (2015b): Canrightiopsis a new Early Cretaceous fossil with Clavatipollenites-type pollen bridge the gap between extinct Canrightia and extant Chloranthaceae. - Grana 54: 184-212. https://doi.org/10.1080/00173134.2015.1060750

  • Friis E. M. Iglesias A. Reguero M. A. Mörs T. (2017): Notonuphar antarctica an extinct water lily (Nymphaeales) from the Eocene of Antarctica. - Plant Systematics and Evolution 303: 969-980. https://doi.org/10.1007/s00606-017-1422-y

  • Friis E. M. Marone F. Pedersen K. R. Crane P. R. Stampanoni M. (2014): Three-dimensional visualization of fossil flowers fruits seeds and other plant remains using synchrotron radiation X-ray tomographic microscopy (SRXTM): New insights into Cretaceous plant diversity. - Journal of Paleontology 88: 684-701. https://doi.org/10.1666/13-099

  • Friis E. M. Pedersen K. R. (2011): Canrightia resinifera gen. et sp. nov. a new extinct angiosperm with Retimonocolpites- type pollen from the Early Cretaceous of Portugal: missing link in the eumagnoliid tree? - Grana 50: 3-29. https://doi.org/10.1080/00173134.2011.559728

  • Friis E. M. Pedersen K. R. Crane P. R. (1999): Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. - Annals of the Missouri Botanical Garden 86: 259-296. https://doi.org/10.2307/2666179

  • Friis E. M. Pedersen K. R. Crane P. R. (2009): Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. - American Journal of Botany 96: 252-283. https://doi.org/10.3732/ajb.0800113

  • Friis E. M. Pedersen K. R. Crane P. R. (2010): Cretaceous diversification of angiosperms in the western part of the Iberian Peninsula. - Review of Palaeobotany and Palynology 162: 341-361. https://doi.org/10.1016/j.revpalbo.2009.11.009

  • Frumin S. Friis E. M. (1999): Magnoliid reproductive organs from the Cenomanian-Turonian of north-western Kazakhstan: Magnoliaceae and Illiciaceae. - Plant Systematics and Evolution 216: 265-288. https://doi.org/10.1007/BF01084403

  • Losada J. M. Bachelier J. B. Friedman W. E. (2017): Prolonged embryogenesis in Austrobaileya scandens (Austrobaileyaceae): its ecological and evolutionary significance. - New Phytologist 215: 851-864. https://doi.org/10.1111/nph.14621

  • Löhne C. Borsch T. Wiersema J. H. (2007): Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. - Botanical Journal of the Linnean Society 154: 141-163. https://doi.org/10.1111/j.1095-8339.2007.00659.x

  • Magallon S. Sanderson M. (2002): Relationships among seed plants inferred from highly conserved genes: Sorting conflicting phylogenetic signals among ancient lineages. - American Journal of Botany 89: 1991-2006. https://doi.org/10.3732/ajb.89.12.1991

  • Miki S. (1960): Nymphaeaceous remains in Japan with new fossil genus Eoeuryale. - Journal of the Institute of Polytechnics Osaka City University 11: 63-78.

  • Oh I.-C. Denk T. Friis E. M. (2003): Evolution of Illicium (Illiciaceae): Mapping morphological characters on the molecular tree. - Plant Systematics and Evolution 240: 175-209. https://doi.org/10.1007/s00606-003-0022-1

  • Pedersen K. R. Crane P. R. Drinnan A. N. Friis E. M. (1991): Fruits from the mid-Cretaceous of North America with pollen grains of the Clavatipollenites type. - Grana 30: 577-590. https://doi.org/10.1080/00173139109427816

  • Schindelin J. Arganda-Carreras I. Frise E. Kaynig V. Longair M. Pietzsch T. Preibisch S. Rueden S. Saalfeld S. Schmid B. Tinevez J.-Y. White D. J. Hartenstein V. Eliceiri K. Tomancak P. Cardona A. (2012): Fiji: an open-source platform for biological-image analysis. - Nature methods 9: 676-682. https://doi.org/10.1038/nmeth.2019

  • Stampanoni M. Groso A. Isenegger A. Mikuljan G. Chen Q. Bertrand A. Henein S. Betemps R. Frommherz U. Bohler P. Meister D. Lange M. Abela R. (2006): Trends in synchrotron-based tomographic imaging: the SLS experience. - In: Bonse U. (ed.) Developments in X-Ray Tomography V. Proceedings of SPIE-The International Society for Optical Engineering 6318: 14 pp. https://doi.org/10.1117/12.679497

  • Takahashi M. Crane P. R. Friis E. M. (2007): Fossil seeds of Nymphaeales from the Tamayama Formation (Futaba Group) Upper Cretaceous (Early Santonian) of northeastern Honshu Japan. - International Journal of Plant Sciences 168: 341-350. https://doi.org/10.1086/510414

  • Tobe H. Jaffre T. Raven P. H. (2000): Embryology of Amborella (Amborellaceae): descriptions and polarity of character states. - Journal of Plant Research 113: 271-280. https://doi.org/10.1007/PL00013935

  • Yamada T. Nishida H. Umebayashi M. Uemura K. Kato M. (2008): Oldest record of Trimeniaceae from the Early Cretaceous of northern Japan. - BioMed Central Evolutionary Biology 8: 135.1-135.7. https://doi.org/10.1186/1471-2148-8-135

  • Yamada T. Imaichi R. Kato M. (2001): Developmental morphology of ovules and seeds of Nymphaeales. - American Journal of Botany 88: 963-974. https://doi.org/10.2307/2657077

Journal information
Impact Factor

CiteScore 2018: 0.72

SCImago Journal Rank (SJR) 2018: 0.347
Source Normalized Impact per Paper (SNIP) 2018: 0.376

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 204 5
PDF Downloads 113 98 3