Low-Carbohydrate-High-Fat Diet: Can it Help Exercise Performance?

Chen-Kang Chang 1 , Katarina Borer 2 , and Po-Ju Lin 2
  • 1 Sport Science Research Center, National Taiwan University of Sport, Taichung, Taiwan
  • 2 School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
Chen-Kang Chang, Katarina Borer and Po-Ju Lin

Abstract

Low-carbohydrate-high-fat (LCHF) diets have been used as a means of weight loss and control of symptoms in several clinical conditions. There is emerging evidence that the metabolic changes induced by LCHF diets enhance endurance performance. The aims of this review are to examine the evidence of LCHF diets in improving various aspects of athletic performance. Long-term LCHF dietary intake may help control body weight and fat mass while maintaining lean body mass in athletes in weight-sensitive sports. LCHF-adapted endurance athletes can reach the maximal fat oxidation rate of approximately 1.5 g/min, with a lower carbohydrate oxidation rate and similar muscle glycogen content and a resynthesis rate compared to their counterparts consuming high-carbohydrate-low-fat (HCLF) diets. The elevated fat oxidation rate and glycogen sparing effect may improve performance in ultra-endurance events. These metabolic changes may also prevent the decline in performance in later stages of repeated high-intensity movements, in which the aerobic metabolism becomes more important. However, elevated blood concentrations of non-esterified fatty acids and ammonia during exercise after LCHF diets may lead to early development of central fatigue. It appears that at least several months of adaptation to a LCHF diet are required for the metabolic changes and restoration of muscle glycogen to occur. Further investigations on LCHF diets are needed regarding (1) performance after weight loss in weight-categorized sports; (2) repeated high-intensity exercise performance; (3) development of central fatigue during endurance events; (4) perceptual-motor performance during prolonged intermittent sports; and (5) ideal dietary fatty acid compositions.

  • Achten J, Jeukendrup AE. Optimizing fat oxidation through exercise and diet. Nutrition, 2004; 20: 716-727

    • Crossref
    • PubMed
    • Export Citation
  • Asmussen E. Muscle fatigue. Med Sci Sports Exerc, 1993; 25: 411-420

  • Bishop D, Edge J. Determinants of repeated-sprint ability in females matched for single-sprint performance. Eur J Appl Physiol, 2006; 97: 373-379

    • Crossref
    • PubMed
    • Export Citation
  • Brinkworth GD, Buckley JD, Noakes M, Clifton PM, Wilson CJ. Long-term effects of a very low-carbohydrate diet and a low-fat diet on mood and cognitive function. Arch Intern Med, 2009a; 169: 1873-1880

    • Crossref
    • Export Citation
  • Brinkworth GD, Noakes M, Clifton PM, Buckley JD. Effects of a low carbohydrate weight loss diet on exercise capacity and tolerance in obese subjects. Obesity (Silver Spring), 2009b; 17: 1916-1923

    • Crossref
    • Export Citation
  • Brito CJ, Roas AF, Brito IS, Marins JC, Cordova C, Franchini E. Methods of body mass reduction by combat sport athletes. Int J Sport Nutr Exerc Metab, 2012; 22: 89-97

    • Crossref
    • PubMed
    • Export Citation
  • Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol, 1994; 76: 2253-2261

    • Crossref
    • PubMed
    • Export Citation
  • Brown PI, Hughes MG, Tong RJ. Relationship between VO(2max) and repeated sprint ability using nonmotorised treadmill ergometry. J Sports Med Phys Fitness, 2007; 47: 186-190

  • Brukner P. Challenging beliefs in sports nutrition: are two ‘core principles’ proving to be myths ripe for busting? Br J Sports Med, 2013; 47: 663-664

    • Crossref
    • PubMed
    • Export Citation
  • Bueno NB, de Melo ISV, de Oliveira SL, da Rocha Ataide T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr, 2013; 110: 1178-1187

    • Crossref
    • PubMed
    • Export Citation
  • Burke LM. Re-examining high-fat diets for sports performance: did we call the ‘nail in the coffin’ too soon? Sports Med, 2015; 45: 33-49

    • Crossref
    • Export Citation
  • Burke LM, Hawley JA. Effects of short-term fat adaptation on metabolism and performance of prolonged exercise. Med Sci Sports Exerc, 2002; 34: 1492-1498

    • Crossref
    • PubMed
    • Export Citation
  • Cameron-Smith D, Burke LM, Angus DJ, Tunstall RJ, Cox GR, Bonen A, Hawley JA, Hargreaves M. A shortterm, high-fat diet up-regulates lipid metabolism and gene expression in human skeletal muscle. Am J Clin Nutr, 2003; 77: 313-318

    • Crossref
    • Export Citation
  • Chang CK, Chang Chien KM, Chang JH, Huang MH, Liang YC, Liu TH. Branched-chain amino acids and arginine improve performance in two consecutive days of simulated handball games in male and female athletes: a randomized trial. PLoS One, 2015; 10: e0121866

    • Crossref
    • PubMed
    • Export Citation
  • Chen IF, Wu HJ, Chen CY, Chou KM, Chang CK. Branched-chain amino acids, arginine, citrulline alleviate central fatigue after 3 simulated matches in taekwondo athletes: a randomized controlled trial. J IntSoc Sports Nutr, 2016; 13: 28

  • Chokkalingam K, Jewell K, Norton L, Littlewood J, van Loon LJ, Mansell P, Macdonald IA, Tsintzas K. High-fat/low-carbohydrate diet reduces insulin-stimulated carbohydrate oxidation but stimulates nonoxidative glucose disposal in humans: An important role for skeletal muscle pyruvate dehydrogenase kinase 4. J Clin Endocrinol Metab, 2007; 92: 284-292

    • Crossref
    • PubMed
    • Export Citation
  • Davidson TL, Hargrave SL, Swithers SE, Sample CH, Fu X, Kinzig KP, Zheng W. Inter-relationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience, 2013; 253: 110-122

    • Crossref
    • PubMed
    • Export Citation
  • Davis JM, Bailey SP. Possible mechanisms of central nervous system fatigue during exercise. Med Sci Sports Exerc, 1997; 29: 45-57

    • Crossref
    • PubMed
    • Export Citation
  • Franchini E, Brito CJ, Artioli GG. Weight loss in combat sports: physiological, psychological and performance effects. J Int Soc Sports Nutr, 2012; 9: 52

    • Crossref
    • PubMed
    • Export Citation
  • Frape DL, Williams NR, Scriven AJ, Palmer CR, O’Sullivan K, Fletcher RJ. Diurnal trends in responses of blood plasma concentrations of glucose, insulin, and C-peptide following high- and low-fat meals and their relation to fat metabolism in healthy middle-aged volunteers. Br J Nutr, 1997; 77: 523-535

    • Crossref
    • PubMed
    • Export Citation
  • Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol (1985), 1993a; 75: 712-719

    • Crossref
    • Export Citation
  • Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol, 1993b; 75: 712-719.

    • Crossref
    • Export Citation
  • Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev, 2001; 81: 1725-1789

    • Crossref
    • PubMed
    • Export Citation
  • Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability - part I: factors contributing to fatigue. Sports Med, 2011; 41: 673-694

    • Crossref
    • PubMed
    • Export Citation
  • Goedecke JH, Christie C, Wilson G, Dennis SC, Noakes TD, Hopkins WG, Lambert EV. Metabolic adaptations to a high-fat diet in endurance cyclists. Metabolism, 1999; 48: 1509-1517

    • Crossref
    • PubMed
    • Export Citation
  • Gudzune KA, Doshi RS, Mehta AK, Chaudhry ZW, Jacobs DK, Vakil RM, Lee CJ, Bleich SN, Clark JM. Efficacy of commercial weight-loss programs: an updated systematic review. Ann Intern Med, 2015; 162: 501-512

    • Crossref
    • PubMed
    • Export Citation
  • Halyburton AK, Brinkworth GD, Wilson CJ, Noakes M, Buckley JD, Keogh JB, Clifton PM. Low- and highcarbohydrate weight-loss diets have similar effects on mood but not cognitive performance. Am J Clin Nutr, 2007; 86: 580-587

    • Crossref
    • Export Citation
  • Hawley JA. Effect of increased fat availability on metabolism and exercise capacity. Med Sci Sports Exerc,2002; 34: 1485-1491

    • Crossref
    • PubMed
    • Export Citation
  • Hession M, Rolland C, Kulkarni U, Wise A, Broom J. Systematic review of randomized controlled trials of low-carbohydrate vs. low-fat/low-calorie diets in the management of obesity and its comorbidities. Obes Rev, 2009; 10: 36-50

    • Crossref
    • PubMed
    • Export Citation
  • Hu T, Mills KT, Yao L, Demanelis K, Eloustaz M, Yancy WS, Jr., Kelly TN, He J, Bazzano LA. Effects of low-carbohydrate diets versus low-fat diets on metabolic risk factors: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol, 2012; 176 Suppl 7: S44-54

    • Crossref
    • Export Citation
  • Jabekk PT, Moe IA, Meen HD, Tomten SE, Hostmark AT. Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat. Nutr Metab (Lond), 2010; 7: 17

    • Crossref
    • PubMed
    • Export Citation
  • Jeukendrup AE. Regulation of fat metabolism in skeletal muscle. Ann N Y Acad Sci, 2002; 967: 217-235

    • PubMed
    • Export Citation
  • Johnston R, Poti JM, Popkin BM. Eating and aging: trends in dietary intake among older Americans from 1977-2010. J Nutr Health Aging, 2014; 18: 234-242

    • Crossref
    • PubMed
    • Export Citation
  • Karlsson J, Saltin B. Diet, muscle glycogen, and endurance performance. J Appl Physiol, 1971; 31: 203-206

    • Crossref
    • PubMed
    • Export Citation
  • Khodaee M, Olewinski L, Shadgan B, Kiningham RR. Rapid weight loss in sports with weight classes. Curr Sports Med Rep, 2015; 14: 435-441

    • Crossref
    • PubMed
    • Export Citation
  • Langfort J, Czarnowski D, Zendzian-Piotrowska M, Zarzeczny R, Gorski J. Short-term low-carbohydrate diet dissociates lactate and ammonia thresholds in men. J Strength Cond Res, 2004; 18: 260-265

    • PubMed
    • Export Citation
  • Langfort J, Pilis W, Zarzeczny R, Nazar K, Kaciuba-Uscilko H. Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in men. J Physiol Pharmacol, 1996; 47: 361-371

    • PubMed
    • Export Citation
  • MacLean DA, Graham TE, Saltin B. Stimulation of muscle ammonia production during exercise following branched-chain amino acid supplementation in humans. J Physiol, 1996; 493: 909-922

    • Crossref
    • PubMed
    • Export Citation
  • Martin CK, Rosenbaum D, Han H, Geiselman PJ, Wyatt HR, Hill JO, Brill C, Bailer B, Miller BV, 3rd, Stein R, Klein S, Foster GD. Change in food cravings, food preferences, and appetite during a low-carbohydrate and low-fat diet. Obesity (Silver Spring), 2011; 19: 1963-1970

    • Crossref
    • PubMed
    • Export Citation
  • Marttinen RH, Judelson DA, Wiersma LD, Coburn JW. Effects of self-selected mass loss on performance and mood in collegiate wrestlers. J Strength Cond Res, 2011; 25: 1010-1015

    • Crossref
    • PubMed
    • Export Citation
  • McCartney N, Spriet LL, Heigenhauser GJF, Kowalchuk JMSJR, Jones NL. Muscle power and metabolism in maximal intermittent exercise. J Appl Physiol, 1986; 60: 1164-1169

    • Crossref
    • PubMed
    • Export Citation
  • Meeusen R, Watson P, Dvorak J. The brain and fatigue: new opportunities for nutritional interventions? J Sports Sci, 2006; 24: 773-782

    • Crossref
    • PubMed
    • Export Citation
  • Mutch BJ, Banister EW. Ammonia metabolism in exercise and fatigue: a review. Med Sci Sports Exerc, 1983; 15: 41-50

    • PubMed
    • Export Citation
  • Myers EF, Khoo CS, Murphy W, Steiber A, Agarwal S. A critical assessment of research needs identified by the dietary guidelines committees from 1980 to 2010. J Acad Nutr Diet, 2013; 113: 957-971 e951

    • Crossref
    • PubMed
    • Export Citation
  • Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, Vollset SE, Ozgoren AA, Abdalla S, Abd-Allah F. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015; 385: 117-171

    • Crossref
    • PubMed
    • Export Citation
  • Noakes T, Volek JS, Phinney SD. Low-carbohydrate diets for athletes: what evidence? Br J Sports Med, 2014; 48: 1077-1078

    • Crossref
    • PubMed
    • Export Citation
  • North JS, Williams AM, Hodges N, Ward P, Ericsson KA. Perceiving patterns in dynamic action sequences: Investigating the processes underpinning stimulus recognition and anticipation skill. Appl Cogn Psychol, 2009; 23: 878-894

    • Crossref
    • Export Citation
  • Owen OE, Morgan AP, Kemp HG, Sullivan JM, Herrera MG, Cahill GF, Jr. Brain metabolism during fasting. J Clin Invest, 1967; 46: 1589-1595

    • Crossref
    • PubMed
    • Export Citation
  • Paoli A, Bianco A, Grimaldi KA. The ketogenic diet and sport: a possible marriage? Exerc Sport Sci Rev, 2015; 43: 153-162

    • Crossref
    • Export Citation
  • Paoli A, Grimaldi K, D’Agostino D, Cenci L, Moro T, Bianco A, Palma A. Ketogenic diet does not affect strength performance in elite artistic gymnasts. J Int Soc Sports Nutr, 2012; 9: 34

    • Crossref
    • PubMed
    • Export Citation
  • Pardridge WM. Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res, 1998; 23: 635-644

    • Crossref
    • PubMed
    • Export Citation
  • Phinney SD. Ketogenic diets and physical performance. Nutr Metab (Lond), 2004; 1: 2

    • Crossref
    • PubMed
    • Export Citation
  • Phinney SD, Bistrian BR, Evans WJ, Gervino E, Blackburn GL. The human metabolic response to chronic ketosis without caloric restriction: preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism, 1983; 32: 769-776

    • Crossref
    • PubMed
    • Export Citation
  • Rampinini E, Bishop D, Marcora SM, Ferrari Bravo D, Sassi R, Impellizzeri FM. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med, 2007; 28: 228-235

    • Crossref
    • PubMed
    • Export Citation
  • Rhyu HS, Cho SY. The effect of weight loss by ketogenic diet on the body composition, performance-related physical fitness factors and cytokines of Taekwondo athletes. J Exer Rehabil, 2014; 10: 326-331

    • Crossref
    • Export Citation
  • Roberts MD, Holland AM, Kephart WC, Mobley CB, Mumford PW, Lowery RP, Fox CD, McCloskey AE, Shake JJ, Mesquita P, Patel RK, Martin JS, Young KC, Kavazis AN, Wilson JM. A putative low-carbohydrate ketogenic diet elicits mild nutritional ketosis but does not impair the acute or chronic hypertrophic responses to resistance exercise in rodents. J Appl Physiol (1985), 2016; 120: 1173-1185

    • Crossref
    • PubMed
    • Export Citation
  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol, 1993; 265: E380-391

    • PubMed
    • Export Citation
  • Romijn JA, Coyle EF, Sidossis LS, Zhang XJ, Wolfe RR. Relationship between fatty acid delivery and fatty acid oxidation during strenuous exercise. J Appl Physiol, 1995; 79: 1939-1945

    • Crossref
    • PubMed
    • Export Citation
  • Ross A, Gill ND, Cronin JB. Comparison of the Anthropometric and Physical Characteristics of International and Provincial Rugby Sevens Players. Int J Sports Physiol Perform, 2015; 10: 780-785

    • Crossref
    • PubMed
    • Export Citation
  • Ruth MR, Port AM, Shah M, Bourland AC, Istfan NW, Nelson KP, Gokce N, Apovian CM. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism, 2013; 62: 1779-1787

    • Crossref
    • PubMed
    • Export Citation
  • Sharman MJ, Gomez AL, Kraemer WJ, Volek JS. Very low-carbohydrate and low-fat diets affect fasting lipids and postprandial lipemia differently in overweight men. J Nutr, 2004; 134: 880-885

    • Crossref
    • PubMed
    • Export Citation
  • Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract, 2010; 87: 4-14

    • Crossref
    • PubMed
    • Export Citation
  • Spencer M, Bishop D, Dawson B, Goodman C. Physiological and metabolic responses of repeated-sprint activities:specific to field-based team sports. Sports Med, 2005; 35: 1025-1044

    • Crossref
    • PubMed
    • Export Citation
  • Stellingwerff T, Spriet LL, Watt MJ, Kimber NE, Hargreaves M, Hawley JA, Burke LM. Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. Am J Physiol Endocrinol Metab, 2006; 290: E380-388

    • Crossref
    • PubMed
    • Export Citation
  • Stephens FB, Constantin-Teodosiu D, Greenhaff PL. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. J Physiol, 2007; 581: 431-444

    • Crossref
    • PubMed
    • Export Citation
  • Struder HK, Hollmann W, Platen P, Donike M, Gotzmann A, Weber K. Influence of paroxetine, branched-chain amino acids and tyrosine on neuroendocrine system responses and fatigue in humans. Horm Metab Res, 1998; 30: 188-194

    • Crossref
    • PubMed
    • Export Citation
  • Venables MC, Achten J, Jeukendrup AE. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol, 2005; 98: 160-167

    • Crossref
    • PubMed
    • Export Citation
  • Volek JS, Freidenreich DJ, Saenz C, Kunces LJ, Creighton BC, Bartley JM, Davitt PM, Munoz CX, Anderson JM, Maresh CM, Lee EC, Schuenke MD, Aerni G, Kraemer WJ, Phinney SD. Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism, 2016; 65: 100-110

    • Crossref
    • PubMed
    • Export Citation
  • Volek JS, Noakes T, Phinney SD. Rethinking fat as a fuel for endurance exercise. Eur J Sport Sci, 2015; 15: 13-20

    • Crossref
    • PubMed
    • Export Citation
  • Volek JS, Sharman MJ, Gomez AL, DiPasquale C, Roti M, Pumerantz A, Kraemer WJ. Comparison of a very low-carbohydrate and low-fat diet on fasting lipids, LDL subclasses, insulin resistance, and postprandial lipemic responses in overweight women. J Am Coll Nutr, 2004; 23: 177-184

    • Crossref
    • PubMed
    • Export Citation
  • Volek JS, Sharman MJ, Love DM, Avery NG, Gomez AL, Scheett TP, Kraemer WJ. Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism, 2002; 51: 864-870

    • Crossref
    • PubMed
    • Export Citation
  • Walker JL, Heigenhauser GJ, Hultman E, Spriet LL. Dietary carbohydrate, muscle glycogen content, and endurance performance in well-trained women. J Appl Physiol, 2000; 88: 2151-2158

    • Crossref
    • PubMed
    • Export Citation
  • White AM, Johnston CS, Swan PD, Tjonn SL, Sears B. Blood ketones are directly related to fatigue and perceived effort during exercise in overweight adults adhering to low-carbohydrate diets for weight loss: a pilot study. J Am Diet Assoc, 2007; 107: 1792-1796

    • Crossref
    • PubMed
    • Export Citation
  • Wilkinson DJ, Smeeton NJ, Watt PW. Ammonia metabolism, the brain and fatigue; revisiting the link. Prog Neurobiol, 2010; 91: 200-219

    • Crossref
    • Export Citation
  • Yang CC, Wu CL, Chen IF, Chang CK. Prevention of perceptual-motor decline by branched-chain amino acids, arginine, citrulline after tennis match. Scand J Med Sci Sports, 2016;

    • Crossref
    • PubMed
    • Export Citation
  • Zajac A, Poprzecki S, Maszczyk A, Czuba M, Michalczyk M, Zydek G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients, 2014; 6: 2493-2508

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search