A Comparison of Somatic Variables of Elite Ice Hockey Players from the Czech ELH and Russian KHL

Open access


The goals of this study were to evaluate the basic morphological variables of contemporary elite ice hockey players, compare the parameters of players in the top Russian ice hockey league (KHL) with those of the top Czech ice hockey league (ELH), and to evaluate the parameters of players according to their position in the game. The research participants included 30 KHL players (mean age: 27.1 ± 5.1 years) and 25 ELH players (mean age: 26.4 ± 5.8 years). We determined body height, body mass, and body composition (body fat, fat-free mass, segmental fat analysis). All measurements were performed at the end of preseason training. The KHL players had the following anthropometric characteristics: body height 182.97 ± 5.61 cm (forward) and 185.72 ± 3.57 cm (defenseman), body mass 89.70 ± 5.28 kg (forward) and 92.52 ± 4.01 kg (defenseman), body fat 10.76 ± 0.63 kg (forward) and 11.10 ± 0.48 kg (defenseman), fatfree mass 78.94 ± 4.65 kg (forward) and 81.42 ± 3.52 kg (defenseman). The values for ELH players were as follows: body height 182.06 ± 5.93 cm (forward) and 185.88 ± 7.13 cm (defenseman), body mass 88.47 ± 7.06 kg (forward) and 89.36 ± 10.91 kg (defenseman), body fat 12.57 ± 2.89 kg (forward) and 11.91 ± 3.10 kg (defenseman), fat-free mass 75.93 ± 6.54 kg (forward) and 77.46 ± 7.89 kg (defenseman). The results indicate that it is beneficial to ice hockey players to have increased body mass and lower body fat, which leads to higher muscle mass, thus enabling a player to perform at the highest level and meet the specific challenges of the game.

Agre JC, Casal DC, Leon AS, Mcnally C, Baxter TL, Serfass RC. Profesional ice hockey players: physologic, anthropometric and musculoskeletal characteristics. Arch Phys Med Rehab, 1988; 69: 188-192

Bahadori B, Uitz E, Toninger-Bahadori K, Pestemer-Lach I, Trummer M, Thonhofer R, Brath H, Schaflinger E. Body composition: the fat-free mass index (FFMI) and distribution among the adult Austrian population - results of cross - sectional pilot study. International Journal of Body Composition Research, 2006; 4: 123-128

Barzilay D. Evaluation structure for determining performance value of developing hockey players. Acta Universitatis Carolinae: Kinanthropologica, 2002; 38: 5-27

Behm DG, Wahl MJ, Button DC, Power KE, Anderson KG. Relationship between hockey skating speed and selected performance measures. J Strength Cond Res, 2005; 19: 326-331

Blanchard K. The Anthropology of Sport: An Introduction (A Revised Edition). Westport: Bergin & Garvey, Greenwood Publishing Group, Inc., 65-87; 1995

Burr JF, Jamnik RK, Baker J, Macpherson A, Gledhill N, McGuire EJ. Relationship of physical fitness test results and hockey platiny potential in elite-level ice hockey players. J Strength Cond Res, 2008; 22: 1535-1543

Cohen J. Statistical power analysis for the behavioral sciences. New Jersey: Lawrence Erlbaum Associates, 273-288; 1988

Green MR, Pivarnik JM, Carrier DP, Womack ChJ. Relationship between physiological profiles and on-ice performance of a national collegiate athletic association division I Hockey Team. J Strength Cond Res, 2006; 20: 43-48

Grosser M, Zintl F. Training of the physical conditions. Schorndorf: Hoffman, 7-10; 1994

Heyward VH, Wagner DR. Applied body composition assessment. Champaign IL, Human Kinetics, 87-98; 2004

Hoff J, Svendsen LH, Helgerud J. Lactate production and elimination in ice hockey players during an elite series match. Corpus, Psyche & Societas, 2001; 8: 45-55

Hoff J, Kemi OJ, Helgerud J. Strength and endurance differences between elite and junior elite ice hockey players. The importance of allometric scaling. Int J Sports Med, 2005; 26: 537-541

Kyle UG, Schulz Y, Dupertius YM, Pichard C. Body composition interpretation: Contributions of the fatfreemass index and the bodyfat mass index. Nutrition, 2003; 19: 587-604

MacLean E. Full Year Periodized Sport Specific Conditioning Program for the Canadian Junior Hockey Player. A theoretical review of the physiological demands of ice-hockey, 2008; 1-16

Manners TW. Sport-specific training for ice hockey. Strength Cond, 2004; 26: 16-21

Montgomery DL. Physiology of ice hockey. Exercise and sport science. Edited by WE Garrett, Jr., and DT Kirkendall, Lippincott, Williams & Wilkins, Philadelphia, Penn., 815-828; 2000

Montgomery DL. Physiological profile of proffesional hockey players - a longitudinal comparasion. Appl Physiol Nutr Metab, 2006; 31: 181-185

Nadeau L, Godbout P, Richard JF. Assessment of ice hockey performance in real-game conditions. European Journal of Sport Science, 2008; 8: 379-388

Norton K, Olds T. Morphological Evolution of Athletes Over the 20th Century. Sports Medicine, 2001; 31: 763-783

Papapanagiotou A, Gissis I, Papadopoulos C, Souglis A, Bogdanis GC, Giosos I, Sotiropoulos A. Changes in Homocysteine and 8-iso-PGF2a Levels in Football and Hockey Players After a Match. Research in Sports Medicine, 2011; 19: 118-128

Peyer KL, Pivarnik JM, Eisenmann JC, Vorkapich M. Physiological Characteristics of National Collegiate Athletic Association Division I Ice Hockey Players and Their Relation to Game Performance. J Strength Cond Res, 2011; 25: 1183-1192

Potteiger JA, Smith DL, Maier ML, Foster TS. Relationship Between Body Composition, Leg Strength, Anaerobic Power, and On-Ice Skating Performance in Division I Men's Hockey Athletes. J Strength Cond Res, 2010; 24: 1755-1762

Quinney HA, Dewart R, Game A, Snydmiller G, Warburton D, Bell G. A 26 year physiological description of a National Hockey League team. Applied physiology, nutrition, and metabolism, 2008; 33: 753-760

Roczniok R, Maszczyk A, Stanula A, Czuba M, Pietraszewski P, Kantyka J, Starzyński M. Physiological and physical profiles and on-ice performance approach to predict talent in male youth ice hockey players during draft to hockey team. Isokinetics & Exercise Science, 2013; 21: 121-127

Schnabel G, Haare H-D, Krug J. Theory of Training - Science in Training. Aachen: Meyer & Meyer Verlag, 34-94; 2008

Sigmund M, Dostálová I. The basic morphological characteristics, body composition and segmental analysis in elite-level ice hockey players of the professional russian hockey league. Česká antropologie, 2011; 61: 25-31

Sigmund M, Riegerová J, Dostálová I. Development of the basic morphological characteristics in the elitelevel senior ice hockey players in the Czech Republic in the context of years 1928 - 2010. Česká antroplogie, 2012; 62: 29-35

Sigmund M, Riegerová J, Dostálová I, Sigmundová D. Analysis of the basic morphological characteristics of current ice hockey players from around the world in relation to level of performance according to ranking of International Ice Hockey Federation. Journal Czech Anthropology, 2014; 64: In press

Tarter BC, Kirisci L, Tarter RE, Weatherbee S, Jamnik V, McGuire EJ, Gledhill N. Use of Aggregate Fitness Indicators to Predict Transition into the National Hockey League. J Strength Cond Res, 2009; 23: 1828-1832

Vescovi JD, Murray TM, Van Heest JL. Position performance profilig of elite ice hockey players. International Journal of Sports Physiology and Performance, 2006; 1: 84-94

Journal of Human Kinetics

The Journal of Academy of Physical Education in Katowice

Journal Information

IMPACT FACTOR 2018: 1,414
5-year IMPACT FACTOR: 1,858

CiteScore 2018: 1.60

SCImago Journal Rank (SJR) 2018: 0.644
Source Normalized Impact per Paper (SNIP) 2018: 0.941

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 332 281 20
PDF Downloads 89 83 9