The role of silicon (Si) in increasing plant resistance against fungal diseases

Open access


The use of silicon (Si) in agriculture has attracted a great deal of interest from researchers because of the numerous benefits of this element to plants. The use of silicon has decreased the intensity of several diseases in crops of great economic importance. In this study, the relationship between silicon nutrition and fungal disease development in plants was reviewed. The current review underlines the agricultural importance of silicon in crops, the potential for controlling fungal plant pathogens by silicon treatment, the different mechanisms of silicon-enhanced resistance, and the inhibitory effects of silicon on plant pathogenic fungi in vitro. By combining the data presented in this paper, a better comprehension of the relationship between silicon treatments, increasing plant resistance, and decreasing severity of fungal diseases could be achieved.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Arnon D. and Stout P. 1939. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiology 14: 371-375.

  • Arsenault-Labrecque G. Menzies J.G. and Belanger R.R. 2012. Effect of silicon absorption on soybean resistance to Phakopsora pachyrhizi in different cultivars. Plant Disease 96: 37-42.

  • Bayles R.A. Flath K. Hovmoller M.S. and de Vallavieille-Pope C. 2000. Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe. Agronomie 20: 805-811.

  • Bekker T.F. Kaiser C. and Labuschagne N. 2006. The antifungal activity of potassium silicate and the role of pH against selected plant pathogenic fungi in vitro. South African Journal of Plant Soil 26: 55-57.

  • Belanger R.R. Benhamou N. and Menzies J.G. 2003. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathololgy 93: 402–412.

  • Belanger R.R Vivancos J. Wilkinson J.A. Belzile F. and Menzies J.G. 2014. Silicon influence on biotic stress in plants. In Proceedings of the 6th International Conference on Silicon in Agriculture Stockholm Sweden 26-30 August p. 42.

  • Bi Y. Tian S.P. Guo Y.R. Ge Y.H. and Qin G.Z. 2006. Sodium silicate reduces postharvest decay on Hami melons: Induced resistance and fungistatic effects. Plant Disease 90: 279-283.

  • Bowen P. Menzies J. and Ehret D. 1992. Soluble silicon sprays inhibit powdery mildew development on grape leaves. Journal of the American Society for Horticultural Science 117: 906–912.

  • Brunings A.M. Datnoff L.E. Ma J.F. Mitani N. Nagamura Y. Rathinasabapathi B. and Kirst K. 2009. Differential gene expression of rice in responses to silicon and the rice blast fungus Magnaporthe oryzae. Annals of Applied Biology 155: 161-170.

  • Cai K. Gao D. Chen J. and Luo S. 2009. Probing the mechanisms of silicon-mediated pathogen resistance. Plant Signaling and Behavior 4: 1-3.

  • Cai K.Z. Gao D. Luo S.M. Zeng R.S. Yang J.Y. and Zhu X.Y. 2008. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiological Plantarum 134: 324–333.

  • Chain F. Cote-Beaulieu C. Belzile F. Menzies J.G. and Belanger R. 2009. A comprehensive transcriptomic analysis of the effect of silicon on wheat plants under control and pathogen stress conditions. Molecular Plant-Microbe Interactions 22: 1323-1330.

  • Cherif M. Asselin A. and Belanger R.R. 1994. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84: 236–242.

  • Cherif M. Menzies J.G. Benhamou N. and Belanger R.R. 1992. Studies of silicon distribution in wounded and Pythium ultimum infected cucumber plants. Physiological and Molecular Plant Pathology 41:371–385.

  • Conrath U. 2006. Systemic acquired resistance. Plant Signal and Behavior 4: 179-84.

  • Dallagnol L.J. Rodrigues F.A. DaMatta F.M. Mielli M.V.B. and Pereira S.C. 2011. Deficiency in silicon uptake affects cytological physiological and biochemical events in the rice-Bipolaris oryzae interaction. Phytopathology 101: 92–104.

  • Dallagnol L.J. Rodrigues F.A. Pascholati S.F. Fortunato A.A. and Camargo L.E.A. 2015. Comparison of root and foliar applications of potassium silicate in potentiating post-infection defences of melon against powdery mildew. Plant Pathology 64: 1085–1093.

  • Dann E. and Muir S. 2002. Peas grown in media with elevated plant-available silicon levels have higher activities of chitinases and b-13-glucanase are less susceptible to a fungal leaf spot pathogen and accumulate more foliar silicon. Australian Plant Pathology 31: 9-13.

  • Datnoff L. Elmer W. and Huber D. 2007. Mineral nutrition and plant disease. The American Phyto-pathological Society St. Paul USA. 278 p.

  • Datnoff L.E. and Heckman J.R. 2014. Silicon fertilizers for plant disease protection. In Proceedings of the 16th World Fertilizer Congress of CIECRio. De Janeiro-RJ Brazil 20-24 October p. 37-38.

  • Deepak S. Manjunath G. Manjula S. Niranjan-Raj S. Geetha N.P. and Shetty H.S. 2008. Involvement of silicon in pearl millet resistance to downy mildew disease and its interplay with cell wall proline/hydroxyproline-rich glycoproteins. Australasian Plant Pathology 37: 498-504.

  • Domiciano G. Cacique I. Freitas C. Filippi M. DaMatta F.M. Vale F. and Rodrigues F. 2015. Alterations in gas exchange and oxidative metabolism in rice leaves infected by Pyricularia oryzae are attenuated by silicon. Phytopathology 105: 738-747.

  • Domiciano G.P. Rodrigues F.A. Vale F.X.R. Xavier F.M.S. Moreira W.R. Andrade C.C.L. and Pereira S.C. 2010. Wheat resistance to spot blotch potentiated by silicon. Journal of Phytopathology 158: 334-343.

  • Dubin H.J. and Rajaram S. 1996. Breeding disease-resistant wheats for tropical highlands and lowlands. Annual Review of Phytopathology 34: 503-526.

  • Epstein E. 2009. Silicon: Its manifold roles in plants. Annals of Applied Biology 155: 155-160.

  • Exley C. 1998. Silicon in life: a bioinorganic solution to bioorganic essentiality. Journal of Biological Inorganic Chemistry 69: 139–144.

  • Fauteux F. Chain F. Belzile F. Menzies J.G. and Belanger R.R. 2006. The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. In Proceedings of the National Academy of Sciences of the United States of America 103: 17554–17559.

  • Fauteux F. Rémus-Borel W. Menzies J. and Belanger R. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters 249: 1-6.

  • Fawe A. Abou-Zaid M. Menzies J.G. and Belanger R.R. 1998. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88: 396–401.

  • French-Monar R.D. Rodrigues F.A. Korndorfer G.H. and Datnoff L.E. 2010. Silicon suppresses Phytophthora blight development on bell pepper. Journal of Phytopathology 158: 554-560.

  • Fortunato A.A. Debona D. Bernardeli A.M.A. and Rodrigues F.A. 2015. Defense-related enzymes in soybean resistance to target spot. Journal of Phytopathology 163: 731–742.

  • Fortunato A.A. Rodrigues F.A. Baroni P.J.C. Soares B.G.C. Rodriguez D.M.A. and Pereira O.L. 2012. Silicon suppresses Fusarium wilt development in banana plants. Journal of Phytopathology 160: 674-679.

  • Ghareeb H. Bozso Z. Ott P.G. Repenning C. Stahl F. and Wydra K. 2011. Transcriptome of silicon-induced resistance against Ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiological and Molecular Plant Pathology 75: 83–89.

  • Ghanmi D. McNally D.J. Benhamou N. Menzies J.G. and Belanger R.R. 2004. Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant–microbe interactions. Physiological and Molecular Plant Pathology 64: 189–199.

  • Gillman J. Zlesak D. and Smith J. 2003. Applications of potassium silicate decrease black spot infection of Rosa hybrida ‘Meilpelta’. HortScience 38: 144-1147.

  • Guo Y. Liu L. Zhao J. and Bi Y. 2007. Use of silicon oxide and sodium silicate for controlling Trichothecium roseum postharvest rot in Chinese cantaloupe (Cucumis melo L.). International Journal of Food Science and Technology 42: 1012-1018.

  • Guevel M.H. Menzies J.G. and Blanger R.R. 2007. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. European Journal of Plant Pathology 119: 429-436.

  • Hayasaka T. Fujii H. and Ishiguro K. 2008. The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology 98: 1038-44.

  • Heckman J. 2013. Silicon: A Beneficial Substance. Better Crops 97: 14-16.

  • Heine G. Tikum G. and Horst W. 2007. The effect of silicon on the infection by and spread of Pythium aphanidermatum in single roots of tomato and bitter gourd. Journal of Experimental Botany 58: 569-577.

  • Huang C.H. Roberts P.D. and Datnoff L.E. 2011. Silicon suppresses Fusarium crown and root rot of tomato. Journal of Phytopathology 159: 546–554.

  • Inanaga S. Okasaka A. and Tanaka S. 1995. Does silicon exist in association with organic compounds in rice plant? Japanese Society of Soil Science and Plant Nutrition 11: 111-117.

  • Kablan L. Lagauche A. Delvaux B. and Legreve A. 2012. Silicon reduces black sigatoka development in banana. Plant Disease 96: 273-278.

  • Kanto T. Miyoshi A. Ogawa T. Maekawa K. and Aino M. 2006. Suppressive effect of liquid potassium silicate on powdery mildew of strawberry in soil. Journal of General Plant Pathology 72: 137-142.

  • Kauss K. Franke R. Gilbert S. Dietrich A. and Kroger N. 2003. Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant Journal 33: 87-95.

  • Kim S. Kim W. Park E. and Choi D. 2002. Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92: 1095-1103.

  • Kunoh H. and Ishizaki H. 1975. Silicon levels near penetration sites of fungi on wheat barley cucumber and morning glory leaves. Physiological and Plant Pathology 5: 283-287.

  • Leusch H. and Buchenauer H. 1989. Effect of soil treatments with silica-rich lime fertilizers and sodium trisilicate on the incidence of wheat by Erysiphe graminis and Septoria nodorum depending on the form of N-fertilizer. Journal of Plant Diseases and Protection 96: 154-172.

  • Li Y.C. Bi Y. Ge Y.H. Sun X.J. and Wang Y. 2009. Antifungal activity of sodium silicate on Fusarium sulphureum and its effect on dry rot of potato tubers. Journal of Food Science 74: M213-M218.

  • Liang Y.C. Si J. and Romheld V. 2005. Silicon uptake and transport is an active process in Cucumis sativus. New Phytologist 167: 797–804.

  • Liang Y. Sun W. Zhu Y.G. and Christie P. 2007. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution 147: 422-428.

  • Liu J. Zong Y. Qin G. Li B. and Tian S. 2010. Plasma membrane damage contributes to antifungal activity of silicon against Penicillium digitatum. Current Microbiology 61: 274-279.

  • Lowenstam H.A. 1981. Minerals formed by organisms. Science 211: 1126–1131.

  • Ma Z. and Michailides T.J. 2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection 24: 853-863.

  • Ma J.F. and Takahashi E. 2002. Soil fertilizer and plant silicon research in Japan. Elsevier Science Amsterdam The Netherlands 294 p.

  • Ma J.F. and Yamaji N. 2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science 11: 392-397.

  • Maekawa K. Watanabe K. Kanto T. Aino M. and Saigusa M. 2003. Effect of soluble silicic acid on suppression of rice leaf blast. Japanese Journal of soil sciences and Plant Nutrition 74: 293-299.

  • Mitani N. Ma J.F. and Iwashita T. 2005. Identification of silicon form in xylem sap of rice (Oryza sativa L.). Plant and Cell Physiology 46: 279-283.

  • Moraes S.R. Pozza E.A. Alves E. Pozza A.A. Carvalho J.C. Lima P.H. and Botelho A.O. 2006. Effects of silicon sources on the incidence and severity of the common beans anthracnose. Fitopatologia Brasileira 31: 283-291.

  • Menzies J. Bowen P. Ehret D.L. and Glass A.D.M. 1992. Foliar applications of potassium silicate reduce severity of powdery mildew on cucumber muskmelon and zucchini squash. Journal of the American Society for Horticultural Science 117: 902–905.

  • Menzies J. Ehret D. Glass A. and Samuels A. 1991. The influence of silicon on cytological interactions between Sphaerotheca fuliginea and Cucumis sativus. Physiological and Molecular Plant Pathology 39: 403-414.

  • Meszka B. and Wilk R. 2014. Indirect effect of silicon product against apple scab and strawberry diseases. In Proceedings of the 6th International Conference on Silicon in Agriculture Stockholm Sweden 26-30 August p. 128.

  • Polanco L.R. Rodrigues F.A. Nascimento K.J.T. Cruz M.F.A. Curvelo C.R.S. DaMatta FM Vale FXR. 2014. Photosynthetic gas exchange and antioxidative system in common bean plants infected by Colletotrichum lindemuthianum and supplied with silicon. Tropical Plant Pathology 39:035-042.

  • Qin G.Z. and Tian S.P. 2005. Enhancement of bio-control activity of Cryptococcus laurentii by silicon and the possible mechanisms involved. Phytopathology 95: 69-75.

  • Rahman A. Wallis C. and Uddin W. 2015. Silicon induced systemic defense responses in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology 105: 748-757.

  • Reynolds O.L. Keeping M.G. and Meyer J.H. 2009. Silicon-augmented resistance of plants to herbivorous insects: a review. Annals of Applied Biology 155: 171–186.

  • Rezende D.C. Rodrigues F. A. Carre-Missio V. Schurt D.A. Kawamura I.K. and Korndorfer G.H. 2009. Effect of root and foliar applications of silicon on brown spot development in rice. Australasian Plant Pathology 38: 67-73.

  • Rodgers-Gray B. and Shaw M. 2004. Effects of straw and silicon soil amendments on some foliar and stem-base diseases in pot-grown winter wheat. Plant Pathology 53: 733-740.

  • Rodrigues F. Benhamou N. Datnoff L. Jones J. and Belanger R. 2003. Ultrastructural and cytochemical aspects of siliconmediated rice blast resistance. Phytopathology 93: 535-546.

  • Rodrigues F.A. and Datnoff L.E. 2005. Silicon and rice disease management. Fitopatologia Brasileira 30: 457-469.

  • Rodrigues F.A. Datnoff L.E. Korndorfer G.H. See-bold K.W. and Rush M.C. 2001. Effect of silicon and host resistance on sheath blight development in rice. Plant Disease 85 827–32.

  • Rodrigues F.A. Duarte H.S.S. Rezende D.C. Filho W.J.A Korndo G.H. and Zambolim L. 2010. Fo-liar spray of potassium silicate on the control of angular leaf spot on beans. Journal of Plant Nutrition 33: 2082–2093.

  • Rodrigues F.A. Jurick W.M. Datnoff L.E. Jones J.B. and Rollins J.A. 2005. Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiolgical and Molecular Plant Pathology 66: 144–159.

  • Rodrigues F.A. McNally D. Datnoff L. Jones J. Labbe C. Benhamou N. Menzies J. and Bélanger R. 2004. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94: 177-183.

  • Rodrigues F.A. Silva D.W.L. Cruz M.F.A. and Fortu-nato A.A. 2014. Histochemical aspects of wheat resistance to leaf blast mediated by silicon. In Proceedings of the 6th International Conference on Silicon in Agriculture Stockholm Sweden 26-30 August p. 156.

  • Samuels A.L. Glass A.D.M. Ehret D.L. and Menzies J.G. 1991. Mobility and deposition of silicon in cucumber plants. Plant Cell & Environment 14: 485-492.

  • Savant N. Snyder G. and Datnoff L. 1997. Silicon management and sustainable rice production. Advances in Agronomy 58: 151-199.

  • Schurt D.A. Cruz M.F.A. Nascimento K.J.T. Filippi M.C.C. and Rodrigues F.A. 2014. Silicon potentiates the activities of defense enzymes in the leaf sheaths of rice plants infected by Rhizoctonia solani. Tropical Plant Pathology 39: 457-463.

  • Seebold K.W. Datnoff Jr.L.E. Correa-Victoria F.J. Kucharek T.A. and Snyder G. H. 2004. Effects of silicon and fungicides on the control of leaf and neck blast in upland rice. Plant Disease 88: 253-258.

  • Semal J. 1989. Traité de Pathologie Végétale. Les Presses Agronomiques de Gembloux Gembloux Belgium 621 p.

  • Shen G.H. Xue Q.H. Tang M. Chen Q. Wang L.N. Duan C.M. Xue L. and Zhao J. 2010. Inhibitory effects of potassium silicate on five soil-borne phytopathogenic fungi in vitro. Journal of Plant Diseases and Protection 117: 180–184.

  • Shetty R. Jensen B. Shetty N.P. Hansen M. Hansen C.W. Starkey K.R. and Jorgensen H.J.L. 2012. Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. Plant Pathology 61: 120–131.

  • Shephard M.C. 1997. Screening for Fungicides. Annual Review of Phytopathology 25: 189-206.

  • Silva I.T. Rodrigues F.A. Oliveira J.R. Pereira S.C. Andrade C.C.L. Silveira R.P. and Conceic M.M. 2010. Wheat resistance to bacterial leaf streak mediated by silicon. Journal of Phytopathology 158: 253–262.

  • Snyder G.H. Matichenkov V.V. and Datnoff L. E. 2006. Plant Nutrition. Belle Glade Fla USA: Taylor & Francis; Silicon; pp. 551-562.

  • Sun X. Sun Y. Zhang C. Song Z. Chen J. Bai J. Cui Y. and Zhang C. 1994. The mechanism of corn stalk rot control by application of potassic and siliceous fertilizers. Acta Phytophysiologica Sinica 21: 102-108.

  • Van Bockhaven J. Vleesschauwer D.D. and Hofte M. 2013. Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. Journal of Experimental Botany 64: 1281–1293.

  • Van Bockhaven J. Kikuchi S. Asano T. Hofte M. and Vleesschauwer D. 2014. Transcriptome analysis of silicon-induced brown spot resistance in rice reveals central role of photorespiration. In Proceedings of the 6th International Conference on Silicon in Agriculture Stockholm Sweden 26-30 August 174 p.

  • Van Bockhaven J. Spichal L. Novak O. Strnad M. Asano T. Kikuchi S. Hofte M. and Vleesschauwer D.D. 2015. Silicon induces resistance to the brown spot fungus Cochliobolusmiyabeanus by preventing the pathogen from hijacking the rice ethylene pathway. New Phytologist 206: 761–773.

  • Volk R. Kahn R. and Weintraub R. 1958. Silicon content of the rice plant as a factor influencing its resistance to infection by the rice blast fungus Pyricularia oryzae. Phytopathology 48: 179-184.

  • Vivancos J. Labbe C. Menzies J.G. and Belanger R.R. 2015. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Molecular Plant Pathology 16: 572–582.

  • Watanabe S. Shimoi E. Ohkama N. Hayashi H. Yoneyama T. Yazaki J. Fujii F. Shinbo K. Yamamoto K. Sakata K. Sasaki T. Kishimoto N. Kikuchi S. and Fujiwara T. 2004. Identification of several rice genes regulated by Si nutrition. Soil Science and Plant Nutrition 50: 1273-1276.

  • Xavier M.S.Fa. Rodrigues F.A. Domiciano G.B. Oliveira H.V. Silveira P.R. and Moreira W.R. 2011. Wheat resistance to leaf blast mediated by silicon. Australian Plant Pathology 40:28-38.

  • Yang Y.F. Liang Y.C. Lou Y.S. and Sun W.C. 2003. Influences of silicon on peroxidase superoxide dismutase activity and lignin content in leaves of wheat Tritium aestivum L. and its relation to resistance to powdery mildew. Scientia Agricultura Sinica 36: 813-817.

  • Yoshida S. Ohnishi Y. and Kitagishi K. 1962. Chemical forms mobility and deposition in the rice plant. Soil Science and Plant Nutrition 8: 107-113.

  • Zellner W. Frantzb J. and Leisnera S. 2011. Silicon delays Tobacco ringspot virus systemic symptoms in Nicotiana tabacum. Journal of Plant Physiology 168: 1866–1869.

  • Zhang G. Cui Y. Ding X. and Dai Q. 2013. Stimulation of phenolic metabolism by silicon contributes to rice resistance to sheath blight. Journal of Plant Nutrition and Soil Sciences 176: 118–124.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 907 692 35
PDF Downloads 626 506 35