Exploring environmental determinants of Fusarium wilt occurrence on banana in South Central Mindanao, Philippines

Open access

Summary

This study used Maximum Entropy (MaxEnt) to explore potential environmental determinants of Fusarium wilt occurrence on banana in south-central part of the Philippines. Different variables representing topographic, bioclimatic, and edaphic features of an area were tested against data of Fusarium wilt occurrence. Based on the results, precipitation during the driest month, precipitation during the wettest month, precipitation of the warmest quarter, slope, and elevation were the most important variables for predicting the probability of Fusarium wilt occurrence on banana. Results also suggest that among the variables tested, precipitation had the major contribution to the occurrence of Fusarium wilt.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abdullah A.Y.M. Dewan A. Shogib M.R.I. Rahman M.M. and Hossain M.F. 2017. Environmental factors associated with the distribution of visceral leishmaniasis in endemic areas of Bangladesh: modeling the ecological niche. Tropical Medicine and Health 45: 13. https://doi.org/10.1186/s41182-017-0054-9.

  • Aguilar E.A. 1998. Response of banana roots to oxygen deficiency and its implications for Fusarium wilt. In V. G. Saúco (Ed.) International Symposium on Banana in the Subtropics (Puerto de la Cruz Tenerife S ed. Vol. Acta Horticulturae No. 490 pp. 223-228). Leuven Belgium: ISHS (Society for Horticultural Science).

  • Aguilar E.A. Turner D.W. and Sivasithamparam K. 2000. Fusarium oxysporum f. sp. cubense inoculation and hypoxia alter peroxidase and phenylalanine ammonia lyase activities in nodal roots of banana cultivars (Musa sp.) differing in their susceptibility to Fusarium wilt. Australian Journal of Botany 48: 589–596.

  • Allouche O. Tsoar A. and Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232 https://doi.org/10.1111/j.1365-2664.2006.01214.x.

  • Booth T.H. Nix H.A. Busby J.R. and Hutchinson M.F. 2014. Bioclim: the first species distribution modelling package its early applications and relevance to most current MaxEnt studies. Diversity and Distributions 20: 1–9 https://doi.org/10.1111/ddi.12144.

  • Bosso L. Russo D. Di Febbraro M. Cristinzio G. and Zoina A. 2016. Potential distribution of Xylella fastidiosa in Italy: a maximum entropy model. Phytopathologia Mediterranea [S.l.] v. 55 n. 1 p. 62-72. ISSN 1593-2095. Available at: <http://www.fupress.net/index.php/pm/article/view/16429>.

  • Cook D.C. Taylor A.S. Meldrum R.A. and Drenth A. 2015. Potential economic impact of Panama disease (Tropical Race 4) on the Australian banana industry. Journal of Plant Diseases and Protection 122: 229–237 https://doi.org/10.1007/BF03356557.

  • Deltour P. C. França S. Liparini Pereira O. Cardoso I. De Neve S. Debode J. and Höfte M. 2017. Disease suppressiveness to Fusarium wilt of banana in an agroforestry system: Influence of soil characteristics and plant community. Agriculture Ecosystems & Environment 239: 173–181 https://doi.org/10.1016/j.agee.2017.01.018.

  • Dormann C.F. Purschke O. Márquez J.R.G. Lautenbach S. and Schröder B. 2008. Components of uncertainty in species distribution analysis: A case study of the Great Grey Shrike. Ecology 89: 3371–3386 https://doi.org/10.1890/07-1772.1.

  • Elith J. 2000. Quantitative Methods for Modeling Species Habitat: Comparative performance and an application to Australian plants. In Ferson S. and Burgman M. (Eds) Quantitative Methods for Conservation Biology pp. 39–58. New York NY: Springer New York https://doi.org/10.1007/0-387-22648-6_4.

  • Elith J. Phillips S.J. Hastie T. Dudík M. Chee Y.E. and Yates C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43–57 https://doi.org/10.1111/j.1472-4642.2010.00725.x.

  • Farr T.G. Rosen P.A. Caro E. Crippen R. Duren R. Hensley S. Kobrick M. Paller M. Rodriguez E. Roth L. Seal D. Shaffer S. Shimada J. Umland J. Werner M. Oskin M. Burbank D. and Alsdorf D. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics 45 https://doi.org/10.1029/2005RG000183

  • Fu L. Ruan Y. Tao C. Li R. and Shen Q. 2016. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression. Scientific Reports 6: 27731. https://doi:10.1038/srep27731.

  • Galdino T.V. da S. Kumar S. Oliveira L.S.S. Alfenas A.C. Neven L.G. Al-Sadi A.M. and Picanço M.C. 2016. Mapping global potential risk of mango sudden decline disease caused by Ceratocystis fimbriata. PLOS ONE 11: e0159450 https://doi.org/10.1371/journal.pone.0159450.

  • Ghaemi A. Rahimi A. and Banihashemi Z. 2011. Effects of Water Stress and Fusarium oxysporum f. sp. lycopersici on Growth (leaf area plant height shoot dry matter) and shoot nitrogen content of tomatoes under greenhouse conditions. Iran Agricultural Research 29: 51–62 https://doi.org/10.22099/iar.2011.136.

  • Ghag S.B. Shekhawat U.K.S. and Ganapathi T.R. 2015. Fusarium wilt of banana: biology epidemiology and management. International Journal of Pest Management 61: 250–263 https://doi.org/10.1080/09670874.2015.1043972.

  • Gillingham P.K. Huntley B. Kunin W.E. and Thomas C.D. 2012. The effect of spatial resolution on projected responses to climate warming. Diversity and Distributions 18: 990–1000 https://doi.org/10.1111/j.1472-4642.2012.00933.x.

  • Harris I. Jones P.D. Osborn T.J. and Lister D.H. 2014. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. International Journal of Climatology 34: 623–642 https://doi.org/10.1002/joc.3711.

  • Hengl T. Jesus J.M. de Heuvelink G.B.M. Gonzalez M.R. Kilibarda M. Blagotić A. Shangguan W. Wright M.N. Geng X. Bauer-Marschallinger B. Guevara M.A. Vargas R. MacMillan R.A. Batjes N.H. Leenaars J.G.B. Ribeiro E; Wheeler I; Mantel S. and Kempen B. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE 12: e0169748 https://doi.org/10.1371/journal.pone.0169748.

  • Heumann B.W. Walsh S.J. and McDaniel P.M. 2011. Assessing the application of a geographic presence-only model for land suitability mapping. Ecological Informatics 6: 257–269 https://doi.org/10.1016/j.ecoinf.2011.04.004.

  • Hijmans R.J. 2014. Raster: Geographic data analysis and modeling. R package version 2.3-12 http://CRAN.R-project.org/package=raster.

  • Hijmans R.J. Cameron S.E. Parra J.L. Jones P.G. and Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978 https://doi.org/10.1002/joc.1276.

  • Hijmans R.J. Phillips S.J. and Elith J. 2016. Dismo: Species Distribution Modeling. R package version 1.1-1 https://CRAN.R-project.org/package=dismo.

  • Ihaka R. and Gentleman R. 1996. R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics 5: 299–314 https://doi.org/10.1080/10618600.1996.10474713.

  • Jarnevich C.S. Stohlgren T.J. Kumar S. Morisette J.T. and Holcombe T.R. 2015. Caveats for correlative species distribution modeling. Ecological Informatics 29 Part 1: 6–15 https://doi.org/10.1016/j.ecoinf.2015.06.007.

  • Kalle R. Ramesh T. Qureshi Q. and Sankar K. 2013. Predicting the distribution pattern of small carnivores in response to environmental factors in the Western Ghats. PLOS ONE 8: e79295 https://doi.org/10.1371/journal.pone.0079295.

  • Kangire A Rutherfod M.A. and Gold C.S. 2001. Distribution of Fusarium wilt and the populations of Fusarium oxysporum f. sp. cubense on bananas in Uganda. In Molina A.B.; Masdek N.H. and Liew K.W. (Eds) Banana Fusarium Wilt Management: towards Sustainable Cultivation pp. 152–161. Los Banos Laguna: INIBAP-ASPNET.

  • Karangwa P. Blomme G. Beed F. Niyongere C. and Viljoen A. 2016. The distribution and incidence of banana Fusarium wilt in subsistence farming systems in east and central Africa. Crop Protection 84: 132–140 https://doi.org/10.1016/j.cropro.2016.03.003.

  • Lee Y.H. Cha K.H. Lee D.G. Shim H.K. Ko S.J. Park I.J. and Yang K.Y. 2004. Cultural and rainfall factors involved in disease development of Fusarium wilt of sweet potato. Plant Pathology Journal 20: 92–96.

  • Li C. Chen S. Zuo C. Sun Q. Ye Q. Yi G. and Huang B. 2011. The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology 131: 327–340 https://doi.org/10.1007/s10658-011-9811-5.

  • Merow C. Smith M.J. and Silander J.A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does and why inputs and settings matter. Ecography 36: 1058–1069 https://doi.org/10.1111/j.1600-0587.2013.07872.x.

  • Narouei-Khandan H.A. Halbert S.E. Worner S.P. and Bruggen A.H.C. van. 2016. Global climate suitability of citrus huanglongbing and its vector the Asian citrus psyllid using two correlative species distribution modeling approaches with emphasis on the USA. European Journal of Plant Pathology 144: 655–670 https://doi.org/10.1007/s10658-015-0804-7.

  • Pattison A.B. Wright C.L. Kukulies T.L. and Molina A.B. 2014. Ground cover management alters development of Fusarium wilt symptoms in Ducasse bananas. Australasian Plant Pathology 43: 465–476 https://doi.org/10.1007/s13313-014-0296-5.

  • Perez-Vicente L. Dita M.A. and Martínez-de la Parte MSc E. 2014. Technical manual prevention and diagnostic of Fusarium wilt (Panama disease) of banana caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4) https://www.research-gate.net/profile/Einar_Martinez_de_la_Parte/publication/273632807_Technical_Manual_Prevention_and_diagnostic_of_Fusarium_WiltPanama_Disease_of_banana_caused_by_Fusarium_oxysporum_f_sp_cubense_Tropical_Race_4TR4/links/55072e450cf27e990e050b7b/Technical-Manual-Prevention-and-diagnostic-of-Fusarium-WiltPanama-Disease-of-banana-caused-by-Fusarium-oxysporum-f-sp-cubense-Tropical-Race-4TR4.pdf

  • Phillips S.J. Anderson R.P. and Schapire R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259 https://doi.org/10.1016/j.ecolmodel.2005.03.026.

  • Phillips S.J. Dudík M. and Schapire R.E. 2018. Maxent software for modeling species niches and distributions url: http://biodiversityinformatics.amnh.org/open_source/maxent/

  • Ploetz R.C. 2006. Fusarium Wilt of Banana Is Caused by Several Pathogens Referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 96: 653–656 https://doi.org/10.1094/PHYTO-96-0653.

  • Ploetz R.C. 2015a. Fusarium wilt of banana. Phytopathology 105: 1512–1521 https://doi.org/10.1094/PHYTO-04-15-0101-RVW.

  • Ploetz R.C. 2015b. Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Protection 73: 7–15 https://doi.org/10.1016/j.cropro.2015.01.007.

  • PSA. 2017. CountrySTAT Philippines. Other Crops; Area Planted or Harvested. http://countrystat.psa.gov.ph/ (accessed 13 May 2017)

  • R Core Team. 2014. R: A Language and Environment for Statistical ComputingR Foundation for Statistical Computing 2014 http://www.R-project.org/.

  • Ravi I. and Vaganan M.M. 2016. Abiotic stress tolerance in banana. In Rao N.K.S.; Shivashankara K.S. and Laxman R.H. (Eds) Abiotic Stress Physiology of Horticultural Crops pp. 207–222. Springer India https://doi.org/10.1007/978-81-322-2725-0_12

  • Rödder D. Schmidtlein S. Veith M. and Lötters S. 2009. Alien invasive slider turtle in unpredicted habitat: A matter of niche shift or of predictors Studied? PLOS ONE 4: e7843 https://doi.org/10.1371/journal.pone.0007843.

  • Roux N. Baurens F.-C.; Doležel J.; Hřibová E.; Heslop-Harrison P. Town C. Sasaki T. Matsumoto T. Aert R. Remy S. Souza M. and Lagoda P. 2008. Genomics of banana and plantain (Musa spp.). Major Staple Crops in the Tropics 83–111 https://doi.org/10.1007/978-0-387-71219-2_4.

  • Salvacion A.R. 2016. Terrain characterization of small island using publicly available data and open-source software: a case study of Marin-duque Philippines. Modeling Earth Systems and Environment 2: 1–9 https://doi.org/10.1007/s40808-016-0085-y.

  • Salvacion A.R Magcale-Macandog D.B. Cruz P.C.S. Saludes R.B. Pangga I.B. and Cumagun C.J.R. 2018. Evaluation and spatial downscaling of CRU TS precipitation data in the Philippines. Modeling Earth Systems and Environment4: 891–898 https://doi.org/10.1007/s40808-018-0477-2.

  • Shimwela M.M. Blackburn J.K. Jones J.B. Nkuba J. Narouei-Khandan H.A. Ploetz R.C. Beed F. and Bruggen A.H.C. 2016. Local and regional spread of banana Xanthomonas wilt (BXW) in space and time in Kagera Tanzania. Plant Pathology 66(6): 1003-1014. https://doi.org/10.1111/ppa.12637

  • Solpot T.C. Pangga I.B. Baconguis R.D.T. and Cumagun C.J.R. 2016. Occurrence of Fusarium oxysporum f. sp. cubense Tropical race 4 and other genotypes in banana in South-Central Mindanao Philippines. Philippine Agricultural Scientist 99: 370–378.

  • Stover R.H. 1953. The effect of soil moisture on Fusarium species. Canadian Journal of Botany 31: 693–697. https://doi.org/10.1139/b53-050.

  • Stover R.H. 1962. Fusarial wilt (panama disease) of bananas and other Musa species. Commonwealth Mycological Institute.

  • Su Z.-A. Zhang J.-H. and Nie X.-J. 2010. Effect of soil erosion on soil properties and crop yields on slopes in the Sichuan Basin China. Pedosphere 20: 736–746. https://doi.org/10.1016/S1002-0160(10)60064-1.

  • Turechek W.W. and McRoberts N. 2013. Considerations of scale in the analysis of spatial pattern of plant disease epidemics. Annual Review of Phytopathology 51: 453–472. https://doi.org/10.1146/annurev-phyto-081211-173017.

  • Vallejo Pérez M.R. Téliz Ortiz D. De La Torre Almaraz R; López Martinez J.O. and Nieto Ángel D. 2017. Avocado sunblotch viroid: Pest risk and potential impact in México. Crop Protection 99: 118–127. https://doi.org/10.1016/j.cropro.2017.05.015.

  • West A.M. Kumar S. Brown C.S. Stohlgren T.J. and Bromberg J. 2016. Field validation of an invasive species Maxent model. Ecological Informatics 36: 126–134 https://doi.org/10.1016/j.ecoinf.2016.11.001.

  • West A.M. Kumar S. Wakie T. Brown C.S. Stohlgren T.J. Laituri M. and Bromberg J. 2015. Using high-resolution future climate scenarios to forecast Bromus tectorum invasion in rocky mountain National Park. PLOS ONE 10: e0117893 https://doi.org/10.1371/journal.pone.0117893.

  • Wisz M.S. Hijmans R.J. Li J. Peterson A.T. Graham C.H. and Guisan A. 2008. Effects of sample size on the performance of species distribution models. Diversity and Distributions 14: 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x.

  • Wyckhuys K.A.G. Korytkowski C. Martinez J. Herrera B. Rojas M. and Ocampo J. 2012. Species composition and seasonal occurrence of Diptera associated with passionfruit crops in Colombia. Crop Protection 32: 90–98. https://doi.org/10.1016/j.cropro.2011.10.003.

  • Zeng Y. Low B.W. and Yeo D.C.J. 2016. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecological Modelling 341: 5–13. https://doi.org/10.1016/j.ecolmodel.2016.09.019.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 167 167 22
PDF Downloads 72 72 10