Multistrain versus single-strain plant growth promoting microbial inoculants - The compatibility issue

Open access

Summary

Plant Growth Promoting Microorganisms or Plant Probiotics (PGPMs) constitute a promising solution for agricultural sustainability. The concept that inoculation of PGPM mixtures may perform better in enhancing agricultural production than single strain application dates back to the discovery of plant growth rhizobacteria (PGPR) and is gaining ground in our days. This shift is highlighted by the increasing number of research publications dealing with the positive impact of microbial mixtures in promoting plant growth, controlling plant pathogens, as well as providing abiotic stress tolerance. The continuous deposition of patents as well as commercially available formulations concerning bioprotective and/or biostimulant multistrain mixtures also underlines this shift. A major issue in engineering an effective and consistent synthetic multistrain mixture appears to be the compatibility of its components. The present review provides a thorough literature survey supporting the view that treatment of plants with compatible multistrain mixtures generally exerts a better effect in plant growth and health than single-strain inoculation. Our study focuses on multistrain mixtures based on Pseudomonas, Bacillus and beneficial fungal strains, while commercial products are also being referred.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abeysinghe S. 2009. Effect of combined use of Bacillus subtilis CA32 and Trichoderma harzianum RUOI on biological control of Rhizoctonia solani on Solanum melongena and Capsicum annuum. Plant Pathology Journal 8: 9-16.

  • Abhilash P.C. Dubey R. K. Tripathi V. Gupta V. K. and Singh H.B. 2016. Plant growth-promoting microorganisms for environmental sustainability. Trends in Biotechnology 34(11): 847-850.

  • Adesemoye A.O. and Kloepper J.W. 2009. Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology 85(1): 1-12.

  • Agusti L. Bonaterra A. Moragrega C. Camps J. and Montesinos E. 2011. Biocontrol of root rot of strawberry caused by Phytophthora cactorum with a combination of two Pseudomonas fluorescens strains. Journal of Plant Pathology 93(2): 363-372.

  • Ahkami A.H. White III R.A. Handakumbura P.P. and Jansson C. 2017. Rhizosphere engineering: Enhancing sustainable plant ecosystem productivity. Rhizosphere 3: 233-243.

  • Alamri S.A. Hashem M. Mostafa Y. S. Nafady N. A. and Abo-Elyousr K. A. 2019. Biological control of root rot in lettuce caused by Exserohilum rostratum and Fusarium oxysporum via induction of the defense mechanism. Biological Control 128: 76-84.

  • Ali A.Α. ABD El-Kader A.E.S. and Ghoneem K.H.M. 2018. Two Trichoderma species and Bacillus subtilis as biocontrol agents against rhizoctonia disease and their influence on potato productivity. Egyptian Journal Agricultural Research 95: 527-540.

  • Alizadeh H. Behboudi K. Ahmadzadeh M. Javan-Nikkhah M. Zamioudis C. Pieterse C.M. and Bakker P.A. 2013. Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biological Control 65(1): 14-23.

  • Aloo B.N. Makumba B.A. and Mbega E.R. 2019. The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research 219: 26-39.

  • Anith K.N. Faseela K.M. Archana P.A. and Prathapan K.D. 2011. Compatibility of Piriformospora indica and Trichoderma harzianum as dual inoculants in black pepper (Piper nigrum L.). Symbiosis 55(1): 11-17.

  • Anith K.N. Sreekumar A. and Sreekumar J. 2015. The growth of tomato seedlings inoculated with co-cultivated Piriformospora indica and Bacillus pumilus. Symbiosis 65(1): 9-16.

  • Ansari F.A. and Ahmad I. 2019. Fluorescent Pseudomonas-FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Scientific Reports 9(1): 4547.

  • Arnold A.E. Mejía L.C. Kyllo D. Rojas E.I. Maynard Z. Robbins N. and Herre E.A. 2003. Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences 100(26) 15649-15654.

  • Bashan Y. de-Bashan L. E. Prabhu S. R. and Hernandez J.P. 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil 378(1-2): 1-33.

  • Becker J. Eisenhauer N. Scheu S. and Jousset A. 2012. Increasing antagonistic interactions cause bacterial communities to collapse at high diversity. Ecology Letters 15(5): 468-474.

  • Berg G. 2009. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Applied Microbiology and Biotechnology 84(1): 11-18.

  • Berlec A. 2012. Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Science 193: 96-102.

  • Berta G. Copetta A. Gamalero E. Bona E. Cesaro P. Scarafoni A. and D’Agostino G. 2014. Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24(3): 161-170.

  • Brewer M.T. and Larkin R.P. 2005. Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection 24(11): 939-950.

  • Castanheira N.L. Dourado A.C. Pais I. Semedo J. Scotti-Campos P. Borges N. Carvalho G Barreto Crespo M.T. and Fareleira P. 2017. Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiological Research 198: 47-55.

  • Chemeltorit P.P. Mutaqin K.H. and Widodo W. 2017. Combining Trichoderma hamatum THSW13 and Pseudomonas aeruginosa BJ10–86: a synergistic chili pepper seed treatment for Phytophthora capsici infested soil. European Journal of Plant Pathology 147(1): 157-166.

  • Chirino-Valle I. Kandula D. Littlejohn C. Hill R. Walker M. Shields M. Cummings N. Hettiarachchi D.. and Wratten S. 2016. Potential of the beneficial fungus Trichoderma to enhance ecosystem-service provision in the biofuel grass Miscanthus x giganteus in agriculture. Scientific Reports 6: 25109.

  • Cota L.V. Maffia L.A. Mizubuti E.S. Macedo P.E. and Antunes R. F. 2008. Biological control of strawberry gray mold by Clonostachys rosea under field conditions. Biological Control 46(3): 515-522.

  • Couillerot O. Combes-Meynet E. Pothier J. F. Bellvert F. Challita E. Poirier M. A. Rohr R. Comte G. Moënne-Loccoz Y. and Prigent-Combaret C. 2011. The role of the antimicrobial compound 2 4-diacetylphloroglucinol in the impact of biocontrol Pseudomonas fluorescens F113 on Azospirillum brasilense phytostimulators. Micro-biology 157(6): 1694-1705.

  • da Silva J.A.T. de Medeiros E.V. da Silva J.M. Tenório D.D.A. Moreira K.A. Nascimento T.C. E.D.S. and Souza-Motta C. 2016. Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 are biocontrol agents that act against cassava root rot through diff erent mechanisms. Journal of Phytopathology 164(11-12): 1003-1011.

  • De Boer M. van der Sluis I. van Loon L.C. and Bakker P.A. 1999. Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish. European Journal of Plant Pathology 105(2): 201-210.

  • De Vrieze M. Germanier F. Vuille N. and Weisskopf L. 2018. Combining different potato-associated Pseudomonas strains for improved biocontrol of Phytophthora infestans. Frontiers in Microbiology 9: 2573.

  • Deveau A. Gross H. Palin B. Mehnaz S. Schnepf M. Leblond P. Dorrestein P.C. and Aigle B. 2016. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions. FEMS Microbiology Ecology 92(8): fiw107.

  • Domenech J. Reddy M.S. Kloepper J.W. Ramos B. and Gutierrez-Manero J. 2006. Combined application of the biological product LS213 with Bacillus Pseudomonas or Chryseobacterium for growth promotion and biological control of soil-borne diseases in pepper and tomato. Bio-Control 51(2): 245.

  • Emami S. Alikhani H. A. Pourbabaei A. A. Etesami H. Motashare Zadeh B. and Sarmadian F. 2018. Improved growth and nutrient acquisition of wheat genotypes in phosphorus deficient soils by plant growth-promoting rhizospheric and endophytic bacteria. Soil Science and Plant Nutrition 64(6): 719-727.

  • Emami S. Alikhani H.A. Pourbabaei A.A. Etesami H. Sarmadian F. and Motessharezadeh B. 2019. Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environmental Science and Pollution Research 1-10.

  • Foster K.R. and Bell T. 2012. Competition not cooperation dominates interactions among culturable microbial species. Current Biology 22(19): 1845-1850.

  • Friedman J. Higgins L.M. and Gore J. 2017. Community structure follows simple assembly rules in microbial microcosms. Nature Ecology and Evolution 1(5): 0109.

  • Fuga C.A.G. Lopes E.A. Vieira B.S. and da Cunha W.V. 2016. Efficiency and compatibility of Trichoderma spp. and Bacillus spp. isolates on the inhibition of Sclerotium cepivorum. Científica 44(4): 526-531.

  • García R.A.M. Ten Hoopen G.M. Kass D.C. Garita V.A.S. and Krauss U. 2003. Evaluation of myco-parasites as biocontrol agents of Rosellinia root rot in cocoa. Biological Control 27(2): 210-227.

  • Georgakopoulos D.G. Fiddaman P. Leifert C. and Malathrakis N.E. 2002. Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. Journal of Applied Microbiology 92(6): 1078-1086.

  • Großkopf T. and Soyer O.S. 2014. Synthetic microbial communities. Current Opinion in Microbiology 18: 72-77.

  • Guetsky R. Elad Y. Shtienberg D. and Dinoor A. 2002. Improved biocontrol of Botrytis cinerea on detached strawberry leaves by adding nutritional supplements to a mixture of Pichia guilermondii and Bacillus mycoides. Biocontrol Science and Technology 12(5): 625-630.

  • Guijarro B. Larena I. Casals C. Teixidó N. Melgarejo P. and De Cal A. 2019. Compatibility interactions between the biocontrol agent Penicillium frequentans Pf909 and other existing strategies to brown rot control. Biological Control 129: 45-54.

  • Haas D. and Défago G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology 3(4): 307.

  • Hassani M.A. Durán P. and Hacquard S. 2018. Microbial interactions within the plant holobiont. Microbiome 6(1): 58.

  • Hidalgo E. Bateman R. Krauss U. Ten Hoopen M. and Martínez A. 2003. A field investigation into delivery systems for agents to control Moniliophthora roreri. European Journal of Plant Pathology 109(9): 953-961.

  • Hol W. H. Bezemer T. M. and Biere A. 2013. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Frontiers in Plant Science 4 81.

  • Hu J. Wei Z. Friman V.P. Gu S.H. Wang X.F. Eisenhauer N. Yang T.J. Ma J. Shen Q.R. Xu Y.C. and Jousset A. 2016. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression. MBio7(6): e01790-16.

  • Hussein A. Abbasi S. Sharifi R. and Jamali S. 2018. The effect of biocontrol agents consortia against Rhizoctonia root rot of common bean Phaseolus vulgaris. Journal of Crop Protection 7(1): 73-85.

  • Jain A. Singh A. Chaudhary A. Singh S. and Singh H.B. 2014. Modulation of nutritional and anti-oxidant potential of seeds and pericarp of pea pods treated with microbial consortium. Food Research International 64: 275-282.

  • Jain A. Singh A. Singh S. and Singh H.B. 2013. Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. Journal of Plant Growth Regulation 32(2): 388-398.

  • Jain A. Singh A. Singh S. and Singh H.B. 2015. Biological management of Sclerotinia sclerotiorum in pea using plant growth promoting microbial consortium. Journal of Basic Microbiology 55(8): 961-972.

  • Jain A. Singh S. Kumar Sarma B. and Bahadur Singh H. 2012. Microbial consortium–mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. Journal of Applied Microbiology 112(3): 537-550.

  • Jambhulkar P.P. Sharma P. Manokaran R. Lakshman D.K. Rokadia P. and Jambhulkar N. 2018. Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice. European Journal of Plant Pathology 152(3): 747-757.

  • Jetiyanon K. Fowler W.D. and Kloepper J.W. 2003. Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Disease 87(11): 1390-1394.

  • Jiang Z.Q. Guo Y.H. Li S.M. Qi H.Y. and Guo J.H. 2006. Evaluation of biocontrol efficiency of different Bacillus preparations and field application methods against Phytophthora blight of bell pepper. Biological Control 36(2): 216-223.

  • Jisha M.S. and Alagawadi A.R. 1996. Nutrient up-take and yield of sorghum (Sorghum bicolor L. Moench) inoculated with phosphate solubilizing bacteria and cellulolytic fungus in a cotton stalk amended vertisol. Microbiological Research 151(2): 213-217.

  • Jousset A. Becker J. Chatterjee S. Karlovsky P. Scheu S. and Eisenhauer N. 2014. Biodiversity and species identity shape the antifungal activity of bacterial communities. Ecology 95(5): 1184-1190.

  • Kamou N.N. Dubey M. Tzelepis G. Menexes G. Papadakis E.N. Karlsson M. Lagopodi A.L. and Jensen D.F. 2016. Investigating the compatibility of the biocontrol agent Clonostachys rosea IK726 with prodigiosin-producing Serratia rubidaea S55 and phenazine-producing Pseudomonas chlororaphis ToZa7. Archives of Microbiology 198(4): 369-377.

  • Kapongo J.P. Shipp L. Kevan P. and Sutton J.C. 2008. Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biological Control 46(3): 508-514.

  • Kashyap P.L. Rai P. Srivastava A.K. and Kumar S. 2017. Trichoderma for climate resilient agriculture. World Journal of Microbiology and Biotechnology 33(8): 155.

  • Karlsson M. Durling M. B. Choi J. Kosawang C. Lackner G. Tzelepis G.D. Nygren K. Dubey M.K. Kamou N. Levasseur A. Zapparata A. Wang J. Amby D.B. Jensen B. Sarrocco S. Panteris E. Lagopodi A.L. Pöggeler S. Vannacci G. Collinge D.B. Hoffmeister D. Henrissat B. Lee Y.H. and Jensen D.F. 2015. Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea. Genome Biology and Evolution 7(2): 465-480.

  • Karthiba L. Saveetha K. Suresh S. Raguchander T. Saravanakumar D. and Samiyappan R. 2010. PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Management Science: formerly Pesticide Science 66(5): 555-564.

  • Kelsic E. D. Zhao J. Vetsigian K. and Kishony R. 2015. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 521(7553): 516.

  • Keyser C.A. Jensen B. and Meyling N.V. 2016. Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat. Pest Management Science 72(3): 517-526.

  • Kim W.G. Weon H.Y. Seok S.J. and Lee K.H. 2008. In vitro antagonistic characteristics of bacilli isolates against Trichoderma spp. and three species of mushrooms. Mycobiology 36(4): 266-269.

  • Kloepper J.W. Leong J. Teintze M. and Schroth M.N. 1980. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286(5776): 885.

  • Kloepper J.W. Ryu C.M. and Zhang S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11): 1259-1266.

  • Kokalis-Burelle N. Kloepper J.W. and Reddy M.S. 2006. Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Applied Soil Ecology 31(1-2): 91-100.

  • Korada S.K. Yarla N.S. Mishra V. Daim M. A. Sharma B. Ashraf G.M. Reggi R. Palmery M. Peluso I. and Kamal M.A. 2018. Single Probiotic versus Multiple Probiotics-A Debate On Current Scenario for Alleviating Health Benefits. Current Pharmaceutical Design 24(35): 4150-4153.

  • Krauss U. and Soberanis W. 2001. Biocontrol of cocoa pod diseases with mycoparasite mixtures. Biological control 22(2): 149-158.

  • Krauss U. Hidalgo E. Arroyo C. and Piper S.R. 2004. Interaction between the entomopathogens Beauveria bassiana Metarhizium anisopliae and Paecilomyces fumosoroseus and the mycopara-sites Clonostachys spp. Trichoderma harzianum and Lecanicillium lecanii. Biocontrol Science and Technology 14(4): 331-346.

  • Krauss U. Ten Hoopen M. Rees R. Stirrup T. Argyle T. George A. Arroyo C. Corrales E. and Casanoves F. 2013. Mycoparasitism by Clonostachys byssicola and Clonostachys rosea on Trichoderma spp. from cocoa (Theobroma cacao) and implication for the design of mixed biocontrol agents. Biological Control 67(3): 317-327.

  • Kumar M. Mishra S. Dixit V. Kumar M. Agarwal L. Chauhan P. S. and Nautiyal C.S. 2016. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signaling and Behavior 11(1): e1071004.

  • Liu H.X. Li S.M. Luo Y.M. Luo L.X. Li J.Q. and Guo J. H. 2014. Biological control of Ralstonia wilt Phytophthora blight Meloidogyne root-knot on bell pepper by the combination of Bacillus subtilis AR12 Bacillus subtilis SM21 and Chryseobacterium sp. R89. European Journal of Plant Pathology 139(1): 107-116.

  • Liu K. Garrett C. Fadamiro H. and Kloepper J.W. 2016a. Induction of systemic resistance in Chinese cabbage against black rot by plant growth-promoting rhizobacteria. Biological Control 99: 8-13.

  • Liu K. Garrett C. Fadamiro H. and Kloepper J.W. 2016b. Antagonism of black rot in cabbage by mixtures of plant growth-promoting rhizobacteria (PGPR). BioControl 61(5): 605-613.

  • Liu K. McInroy J. A. Hu C.H. and Kloepper J.W. 2018. Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Disease 102(1): 67-72.

  • Liu K. Newman M. McInroy J.A. Hu C. H. and Kloepper J.W. 2017. Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 107(8): 928-936.

  • Lugtenberg B.J. Caradus J.R. and Johnson L.J. 2016. Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology 92(12).

  • Lyons N.A. and Kolter R. 2017. Bacillus subtilis protects public goods by extending kin discrimination to closely related species. MBio 8(4): e00723-17.

  • Maketon M. Apisitsantikul J. and Siriraweekul C. 2008. Greenhouse evaluation of Bacillus subtilis AP-01 and Trichoderma harzianum AP-001 in controlling tobacco diseases. Brazilian Journal of Microbiology 39(2): 296-300.

  • Markowiak P. and Śliżewska K. 2018. The role of probiotics prebiotics and synbiotics in animal nutrition. Gut pathogens 10(1): 21.

  • Maroniche G.A. Diaz P.R. Borrajo M.P. Valverde C.F. and Creus C. 2018. Friends or foes in the rhizosphere: traits of fluorescent Pseudomonas that hinder Azospirillum brasilense growth and root colonization. FEMS microbiology ecology 94(12): fiy202.

  • Mehrabi Z. McMillan V.E. Clark I.M. Canning G. Hammond-Kosack K.E. Preston G. P.R. Hirsch and Mauchline T.H. 2016. Pseudomonas spp. diversity is negatively associated with suppression of the wheat take-all pathogen. Scientific Reports 6: 29905.

  • Mendoza A.R. and Sikora R.A. 2009. Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162 the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. Biocontrol 54(2): 263-272.

  • Mishra D.S. Kumar A. Prajapati C.R. Singh A.K. and Sharma S. D. 2013. Identification of compatible bacterial and fungal isolate and their effectiveness against plant disease. Journal of Environmental Biology 34(2): 183.

  • Molina-Romero D. Baez A. Quintero-Hernández V. Castañeda-Lucio M. Fuentes-Ramírez L.E. del Rocío Bustillos-Cristales M. Rodríguez-Andrade O. Morales-García Y.E. Munive A. and Muñoz-Rojas J. 2017. Compatible bacterial mixture tolerant to desiccation improves maize plant growth. PloS ONE 12(11): e0187913.

  • Müller D.B. Vogel C. Bai Y. and Vorholt J.A. 2016. The plant microbiota: systems-level insights and perspectives. Annual Review of Genetics 50: 211-234.

  • Murphy B.R. Doohan F.M. and Hodkinson T.R. 2015. Persistent fungal root endophytes isolated from a wild barley species suppress seed-borne infections in a barley cultivar. Biocontrol 60(2): 281-292.

  • Murphy B.R. Hodkinson T.R. and Doohan F.M. 2017. A fungal endophyte consortium counterbalances the negative effects of reduced nitrogen input on the yield of field-grown spring barley. The Journal of Agricultural Science 155(8): 1324-1331.

  • Myresiotis C.K. Karaoglanidis G.S. Vryzas Z. and Papadopoulou-Mourkidou E. 2012. Evaluation of plant growth-promoting rhizobacteria acibenzolar-S-methyl and hymexazol for integrated control of Fusarium crown and root rot on tomato. Pest Management Science 68(3): 404-411.

  • Ndiaye M. Termorshuizen A. J. and Van Bruggen A.H.C. 2010. Effects of compost amendment and the biocontrol agent Clonostachys rosea on the development of charcoal rot (Macrophomina phaseolina) on cowpea. Journal of Plant Pathology 173-180.

  • O’Callaghan M. 2016. Microbial inoculation of seed for improved crop performance: issues and opportunities. Applied Microbiology and Biotechnology 100(13): 5729-5746.

  • Ouwehand A.C. Invernici M.M. Furlaneto F.A. and Messora M.R. 2018. Effectiveness of multistrain versus single-strain probiotics: current status and recommendations for the future. Journal of Clinical Gastroenterology 52: S35-S40.

  • Pangesti N. Vandenbrande S. Pineda A. Dicke M. Raaijmakers J.M. and Van Loon J.J. 2017. Antagonism between two root-associated beneficial Pseudomonas strains does not affect plant growth promotion and induced resistance against a leaf-chewing herbivore. FEMS Microbiology Ecology 93(4): fix038.

  • Parnell J.J. Berka R. Young H. A. Sturino J. M. Kang Y. Barnhart D.M. and DiLeo M.V. 2016. From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Frontiers in Plant Science 7: 1110.

  • Patel J.S. Kharwar R.N. Singh H.B. Upadhyay R. S. and Sarma B.K. 2017. Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifications. Frontiers in Microbiology 8: 306.

  • Pierson E.A. and Weller D.M. 1994. Use of mixtures of fluorescent pseudomonads to Suppress Take-all and Improve the Growth of Wheat. Phytopathology 84: 940-947.

  • Prabhukarthikeyan R. Saravanakumar D. and Raguchander T. 2014. Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato. Pest Management Science 70(11): 1742-1750.

  • Prasad A.A. and Babu S. 2017. Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut (Arachis hypogea L.). Anais da Academia Brasileira de Ciências 89(2): 1027-1040.

  • Rathi N. Singh S. Osbone J. and Babu S. 2015. Co-aggregation of Pseudomonas fluorescens and Bacillus subtilis in culture and co-colonization in black gram (Vigna mungo L.) roots. Biocatalysis and Agricultural Biotechnology 4(3): 304-308.

  • Raupach G.S. and Kloepper J.W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88(11): 1158-1164.

  • Ren Q. Chen Z. Luo J. Liu G. Guan G. Liu Z. Liu A. Li Y. Niu Q. Liu J. Yang J. Han X. Yin H. and Yang J. 2016. Laboratory evaluation of Beauveria bassiana and Metarhizium anisopliae in the control of Haemaphysalis qinghaiensis in China. Experimental and Applied Acarology 69(2): 233-238.

  • Reaves J.L. 1994. In vitro colony interactions among species of Trichoderma with inference toward biological control. Res. Pap. PNW-RP-474. Portland OR: US Department of Agriculture Forest Service Pacific Northwest Research Station. 8 p. 474.

  • Ruano-Rosa D. and Herrera C.L. 2009. Evaluation of Trichoderma spp. as biocontrol agents against avocado white root rot. Biological Control 51(1): 66-71.

  • Ruano-Rosa D. Cazorla F. M. Bonilla N. Martín-Pérez R. De Vicente A. and López-Herrera C.J. 2014. Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. European Journal of Plant Pathology 138(4): 751-762.

  • Ryu C. Murphy J.F. Reddy M.S. and Kloepper J.W. 2007. A two-strain mixture of rhizobacteria elicits induction of systemic resistance against Pseudomonas syringae and Cucumber mosaic virus coupled to promotion of plant growth on Arabidopsis thaliana. Journal of Microbiology and Biotechnology 17(2): 280.

  • Samaddar S. Chatterjee P. Choudhur y A. R. Ahmed S. and Sa T. 2019. Interactions between Pseudomonas spp. and their role in improving the red pepper plant growth under salinity stress. Microbiological Research 219: 66-73.

  • Sangeetha G. Usharani S. and Muthukumar A. 2009. Biocontrol with Trichoderma species for the management of postharvest crown rot of banana. Phytopathologia Mediterranea 48(2): 214-225.

  • Santiago C.D. Yagi S. Ijima M. Nashimoto T. Sawada M. Ikeda S. Asano K Orikasa Y. and Ohwada T. 2017. Bacterial compatibility in combined inoculations enhances the growth of potato seedlings. Microbes and Environments 32(1): 14-23.

  • Saravanakumar D. Lavanya N. Muthumeena K. Raguchander T. and Samiyappan R. 2009. Fluorescent pseudomonad mixtures mediate disease resistance in rice plants against sheath rot (Sarocladium oryzae) disease. Biocontrol 54(2): 273.

  • Sarma B.K. Yadav S.K. Singh S. and Singh H. B. 2015. Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biology and Biochemistry 87: 25-33.

  • Seenivasan N. David P.M.M. Vivekanandan P. and Samiyappan R. 2012. Biological control of rice root-knot nematode Meloidogyne graminicola through mixture of Pseudomonas fluorescens strains. Biocontrol Science and Technology 22(6): 611-632.

  • Senthilraja G. Anand T. Kennedy J.S. Raguchander T. and Samiyappan R. 2013. Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leafminer insect and collar rot pathogen. Physiological and Molecular Plant Pathology 82: 10-19.

  • Sharma C.K. Vishnoi V.K. Dubey R.C. and Maheshwari D.K. 2018. A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere 5: 71-75.

  • Siddiqui I.A. and Shaukat S.S. 2003. Combination of Pseudomonas aeruginosa and Pochonia chlamydosporia for Control of Root-Infecting Fungi in Tomato. Journal of Phytopathology 151(4): 215-222.

  • Sikora R.A. Zum Felde A. Mendoza A. Menjivar R. and Pocasangre L. 2010. In Planta Suppressiveness to Nematodes and Long Term Root Health Stability through Biological Enhancement-Do We Need a Cocktail? Acta Horticulturae 879: 553-560

  • Simões M. Simões L. C. Pereira M. O. and Vieira M.J. 2008. Antagonism between Bacillus cereus and Pseudomonas fluorescens in planktonic systems and in biofilms. Biofouling 24(5): 339-349.

  • Singh A. Jain A. Sarma B. K. Upadhyay R.S. and Singh H.B. 2014. Beneficial compatible microbes enhance antioxidants in chickpea edible parts through synergistic interactions. LWT-Food Science and Technology 56(2): 390-397.

  • Singh A. Sarma B.K. Upadhyay R.S. and Singh H.B. 2013a. Compatible rhizosphere microbes mediated alleviation of biotic stress in chick-pea through enhanced antioxidant and phenylpropanoid activities. Microbiological Research 168(1): 33-40.

  • Singh A. Jain A. Sarma B.K. Upadhyay R.S. and Singh H.B. 2013b. Rhizosphere microbes facilitate redox homeostasis in Cicer arietinum against biotic stress. Annals of Applied Biology 163(1): 33-46.

  • Sivasithamparam K. and Parker C.A. 1978. Effects of certain isolates of bacteria and actinomycetes on Gaeumannomyces graminis var. tritici and take-all of wheat. Australian Journal of Botany 26(6): 773-782.

  • Sniffen J.C. McFarland L.V. Evans C.T. and Goldstein E.J. 2018. Choosing an appropriate probiotic product for your patient: An evidence-based practical guide. PloS ONE 13(12): e0209205.

  • Stefanic P. Kraigher B. Lyons N. A. Kolter R. and Mandic-Mulec I. 2015. Kin discrimination between sympatric Bacillus subtilis isolates. Proceedings of the National Academy of Sciences 112(45): 14042-14047.

  • Stockwell V. O. Johnson K.B. Sugar D. and Loper J.E. 2011. Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology 101(1): 113-123.

  • Subramanian P. Kim K. Krishnamoorthy R. Sundaram S. and Sa T. 2015. Endophytic bacteria improve nodule function and plant nitrogen in soybean on co-inoculation with Bradyrhizobium japonicum MN110. Plant Growth Regulation 76(3): 327-332.

  • Sundaramoorthy S. and Balabaskar P. 2012. Consortial effect of endophytic and plant growth-promoting rhizobacteria for the management of early blight of tomato incited by Alternaria solani. Journal of Plant Pathology and Microbiology 3: 7.

  • Sundaramoorthy S. and Balabaskar P. 2013. Evaluation of Combined Efficacy of Pseudomonas fluorescens and Bacillus subtilis in Managing Tomato Wilt Caused by Fusarium oxysporum f. sp. lycopersici (Fol). Plant Pathology Journal 12(4): 154-161.

  • Sundaramoorthy S. Raguchander T. Ragupathi N. and Samiyappan R. 2012. Combinatorial effect of endophytic and plant growth promoting rhizobacteria against wilt disease of Capsicum annum L. caused by Fusarium solani. Biological Control 60(1): 59-67.

  • ten Hoopen G.M. George A. Martinez A. Stirrup T. Flood J. and Krauss U. (2010). Compatibility between Clonostachys isolates with a view to mixed inocula for biocontrol. Mycologia 102(5): 1204-1215.

  • Thakkar A. and Saraf M. 2015. Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Archives of Phytopathology and Plant Protection 48(6): 459-474.

  • Thilagavathi R. Saravanakumar D. Ragupathi N. and Samiyappan R. 2007. A combination of biocontrol agents improves the management of dry root rot (Macrophomina phaseolina) in greengram. Phytopathologia Mediterranea 46(2): 157-167.

  • Turner T. R. James E. K. and Poole P.S. 2013. The plant microbiome. Genome biology 14(6): 209.

  • Varkey S. Anith K.N. Narayana R. and Aswini S. 2018. A consortium of rhizobacteria and fungal endophyte suppress the root-knot nematode parasite in tomato. Rhizosphere 5: 38-42.

  • Vorholt J. A. Vogel C. Carlström C. I. and Mueller D.B. 2017. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host and Microbe 22(2): 142-155

  • Wang C. Wang C. Gao Y.L. Wang Y.P. Guo J.H. 2016. A consortium of three plant growth-promoting rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. Journal of Plant Growth Regulation 35(1): 54-64.

  • Wang C.J. Yang W. Wang C. Gu C. Niu D. D. Liu H. X. Wang Y-P and Guo J.H. 2012. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS ONE 7(12): e52565.

  • Weller D.M. and Cook R.J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73(3): 463-469.

  • Woo S.L. & Pepe O. 2018. Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Frontiers in Plant Science 9: 1801.

  • Woo S. L. Ruocco M. Vinale F. Nigro M. Marra R. Lombardi N. Pascale A. Lanzuise S. Manganiello G. and Lorito M. 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal 8: 71-126.

  • Xu X. Robinson J. Jeger M. and Jeffries P. 2010. Using combinations of biocontrol agents to control Botrytis cinerea on strawberry leaves under fluctuating temperatures. Biocontrol Science and Technology 20(4): 359-373.

  • Yadav S. K. Singh S. Singh H. B. and Sarma B.K. 2017. Compatible rhizosphere-competent microbial consortium adds value to the nutritional quality in edible parts of chickpea. Journal of Agricultural and Food Chemistry 65(30): 6122-6130.

  • Yang P. Sun Z.X. Liu S.Y. Lu H.X. Zhou Y. and Sun M. 2013. Combining antagonistic endophytic bacteria in different growth stages of cotton for control of Verticillium wilt. Crop Protection 47: 17-23.

  • Yobo K.S. Laing M.D. and Hunter C.H. 2011. Effects of single and combined inoculations of selected Trichoderma and Bacillus isolates on growth of dry bean and biological control of Rhizoctonia solani damping-off. African Journal of Biotechnology 10(44): 8746-8756.

  • Zaim S. Bekkar A.A. and Belabid L. 2018. Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Archives of Phytopathology and Plant Protection 51(3-4): 217-226.

  • Zalila-Kolsi I. Mahmoud A.B. Ali H. Sellami S. Nasfi Z. Tounsi S. and Jamoussi K. 2016. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiological Research 192: 148-158.

  • Zhang S. White T.L. Martinez M.C. McInroy J.A. Kloepper J.W. and Klassen W. 2010. Evaluation of plant growth-promoting rhizobacteria for control of Phytophthora blight on squash under greenhouse conditions. Biological Control 53(1): 129-135.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 220 220 59
PDF Downloads 114 114 31