Separation of Process Wastewater with Extractive Heterogeneous-Azeotropic Distillation

Open access


The application of vapour-liquid equilibria-based separation alternatives can be extraordinarily complicated for the treatment of process wastewaters containing heterogeneous-azeotropic. Despite dissimilar successfully tested methods for separation, there is possibility to get better distillation method by enabling the separation of more and more specific process wastewater. Extractive heterogeneous-azeotropic distillation (EHAD) is a new advance in treatment of fine chemical wastewater showing special features to cope with the treatment of highly non-ideal mixtures. This method combines the worth of heterogeneous-azeotropic and extractive distillations in one apparatus without addition of any extra materials. The study of the separations of ternary component process wastewater from the fine chemical industry shows both in the modelled and experimental results that EHAD can be successfully applied. The measured and modelled compositions at extreme purities, that is, close to 0% or 100%, can be different because of the inaccuracies of the modelling. This highlights the paramount importance of the experiments if special extra-fine chemicals with almost no impurities, e.g. of pharmacopoeial quality are to be produced by special distillation technique. This study expands the application of EHAD technique, this new field is the separation of process wastewaters.

[1] Kister, H.: Distillation Design (McGraw-Hill Education, New York) 1992

[2] Szabó, L.; Németh, S.; Szeifert, F.: Separation of multicomponent mixtures, Hung. J. Ind. Chem., 2011 39(2), 295–300

[3] Toth, A.J.; Gergely, F.; Mizsey, P.: Physicochemical treatment of pharmaceutical wastewater: distillation and membrane processes, Per. Pol. Chem. Eng., 2011 55(2), 59–67 DOI 10.3311/

[4] Mizsey, P.; Toth, A.J.: Application of the principles of industrial ecology for the treatment of process waste-waters with physicochemical tools, Indust. Ecol., 2012 1(1), 101–125

[5] Mizsey, P.; Szanyi, A.; Raab, A.; Manczinger, J.; Fonyo, Z.: Intensification of a solvent recovery technology through the use of hybrid equipment, Comp. Aided Chem. Eng., 2002 10(1), 121–126 10.1016/S1570-7946(02)80048-7

[6] Szanyi, A.; Mizsey, P.; Fonyo, Z.: Novel hybrid separation processes for solvent recovery based on positioning the extractive heterogeneous-azeotropic distillation, Chem. Eng. Proc., 2004 43(3), 327–338 DOI 10.1016/S0255-2701(03)00132-6

[7] Szanyi, A.; Mizsey, P.; Fonyo, Z.: Optimisation of nonideal separation structures based on extractive heterogeneous azeotropic distillation, Ind. Eng. Chem. Res., 2004 43(26), 8269–8274 DOI 10.1021/ie049575l

[8] Szanyi, A.; Mizsey, P.; Fonyo, Z.: Separation of highly non-ideal quaternary mixtures with extractive heterogeneous-azeotropic distillation, Chem. Biochem. Eng. Q., 2005 19(2), 111–121

[9] Szanyi, A.: Separation of non-ideal quaternary mixtures with novel hybrid processes based on extractive heterogeneous-azeotropic distillation (PhD Dissertation, BME, Budapest) 2005

[10] Franke, M.; Gorak, A.; Strube, J.: Design and optimisation of hybrid separation processes, Chem. Eng. Tech., 2004 76(3), 199–210 DOI 10.1002/cite.200406150

[11] Skiborowski, M.; Harwardt, A.; Marquardt, W.: Conceptual design of distillation-based hybrid separation processes, Annu. Rev. Chem. Biomol. Eng., 2013 4(1), 45–68 DOI 10.1146/annurev-chembioeng-061010-114129

[12] Skiborowski, M.; Harwardt, A.; Marquardt, W.: Conceptual Design of Azeotropic distillation processes (in Eds.: Gorak, A.; Sorensenm, E.; Distillation: Fundamentals and principles, Academic Press, Aachen, Germany) 2014, Chapter 8, p. 321

[13] Wijesinghe, A.M.J.C.: Development of industrial complexes of special rectification techniques for solvent recovery (PhD dissertation, Lomonosov Institute of Fine Chemical Engineering, Moscow) 1985

[14] Raab, A.: Separation of highly non-ideal mixtures for solvent recovery (MSc Thesis, BME, Budapest) 2001

[15] Abrams, D.S.; Prausnitz, J.M.: Statistical thermodynamics of liquid mixtures: A new expression for the excess gibbs energy of partly or completely miscible systems, AIChE J., 1975 21(1), 116–128 DOI 10.1002/aic.690210115

[16] Egner, K.; Gaube, J.; Pfennig, A.: GEQUAC, an excess Gibbs energy model describing associating and non-associating liquid mixtures by a new model concept for functional groups, Fluid Phase Equilib., 1999 158–160, 381–389 DOI 10.1016/S0378-3812(99)00137-5

[17] Klamt, A.; Krooshof, G.J.P.; Taylor, R.: COSMOSPACE: Alternative to conventional activity-coefficient models, AIChE J., 2002 48(10), 2332–2349 DOI 10.1002/aic.690481023

[18] Wiśniewska-Goclowska, B.; Malanowski, S.X.K.: A new modification of the UNIQUAC equation including temperature dependent parameters, Fluid Phase Equilib., 2001 180(1–2), 103–113 DOI 10.1016/S0378-3812(00)00514-8

[19] Fredenslund, A.; Jones, R.L.; Prausnitz, J.M.: Group-contribution estimation of activity coefficients in non-ideal liquid mixtures, AIChE J., 1975 21(6), 1086–1099 DOI 10.1002/aic.690210607

[20] Akita, K.; Yoshida, Y.: Phase-equilibria in methanol-ethyl acetate-water system, J. Chem. Eng. Data, 1963 8(1), 484–490 DOI 10.1021/je60019a003

[21] Gmehling, J.; Menke, J.; Krafczyk, J.; Fischer, K.: Azeotropic data (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany) 1994

[22] Gmehling, J.; Onken, U.; Rarey-Nies, J. R.: Vapor-liquid equilibrium data collection (Dechema, Virginia, USA) 1978

[23] Marsden, C.: Solvents And Allied Substances Manual With Solubility Chart (Cleaver-Hume and Elsevier, London) 1954

Journal Information

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 274 23
PDF Downloads 162 162 24