Experimental Paper. Intrapopulation variability of flavonoid content in roots of Baikal skullcap (Scutellaria baicalensis Georgi)

Open access

Summary

Introduction: Baikal skullcap (Scutellaria baicalensis Georgi) is an important medicinal plant, indigenous to Asia. Due to a wide range of pharmacological activities, its roots has been used for ages in Traditional Chinese Medicine. Recently, the species has become an object of interest of Western medicine, as well. Objective: The aim of the study was to determine the variability of Baikal skullcap population originated from Mongolia and cultivated in Poland, in terms of content and composition of flavonoids in the roots. Methods: The objects of the study were 15 individual plants, selected within examined population and cloned in order to obtain a sufficient amount of raw material. The total content of flavonoids in roots was determined according to Polish Pharmacopeia 6th. The qualitative analysis of flavonoids was carried out using HPLC, Shimadzu chromatograph. Results: The dry mass of roots ranged from 25.88 to 56.14 g × plant-1. The total content of flavonoids (expressed as a quercetin equivalent) varied between 0.17 and 0.52% dry matter (DM). Nine compounds were detected within the group, with oroxylin A 7-Oglucuronide (346.90-1063.00 mg × 100 g-1 DM) as a dominant, which differentiated investigated clones at the highest degree (CV=0.27). Baicalin (391.40-942.00 mg × 100 g-1 DM), wogonoside (324.00-641.10 mg × 100 g-1 DM) and hesperetine 7-O-glucoside (163.00-346.32 mg × 100 g-1 DM) were also present in a considerable amounts. Clone 7 was distinguished by the highest content of all investigated compounds, except wogonin and oroxylin A 7-O-glucuronide. Conclusions: Results obtained in present study show a high variability within Baical skullcap investigated population in respect of flavonoid compounds detected in roots. Thus, the results may be used in future investigations concerning the selection and breeding of this species.

1. Winston D, Maimes S. Adaptogens - herbs for strength, stamina and stress relief. Herbal Therapeutics. Healing Art Press, 2007.

2. Bai Ch, Wen M, Zhang L, Li G. Genetic diversity and sampling strategy of Scutellaria baicalensis germplasm resources based on ISSR. Genet Resour Crop Evol 2013; 60:1673-1685. doi:

3. Shang X, He X, Li M, Zhang R, Fan P. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharm 2010; 128:279-313. doi:

4. Wang M, Franz G. The role of the European Pharmacopoeia (Ph Eur) in quality control of traditional Chinese herbal medicine in European member states. WJTCM 2015; 1:5-15. doi:

5. Olennikov DN, Chirikova NK, Tankhaeva LM. Phenolic compounds of Scutellaria baicalensis Georgi. Russian J Bioorg Chem 2010; 36:816-824. doi:

6. Malikov VM, Yuledashev MP. Phenolic compounds of plants of the Scutellaria L. genus: distribution, structure, and properties. Chem Nat Comp 2002; 38:358-406. doi:

7. Parajuli P, Joshee N, Rimando A, Mittal S, Yadav AK. In vitro antitumour mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med 2009; 75:41-48.

8. Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents wogonin baicalein and baicalin. Cancer Treat Rev 2009; 35:57-68. doi:

9. Woźniak D, Lamer-Zarawska E, Matkowski A. Antimutagenic and antiradical properties of flavones from the roots of Scutellaria baicalensis Georgi. Nahrung/Food 2004; 48(1):9-12. doi:

10. de Boer JG, Quiney B, Walter PB, Thomas C. Protection against aflatoxin-B1-induced liver mutagenesis by Scutellaria baicalensis. Mut Res 2005; 578:15-22.

11. Lin CM, Shyu KG, Wang BW, Chang H, Chen YH, Chiu JH. Chrysin suppresses IL-6-induced angiogenesis via down-regulation of JAK1/STAT3 and VEGF: an in vitro and in vivo approach. J Agric Food Chem 2010; 58:7082-7087. doi:

12. Chen Y, Lu N, Ling Y, Gao Y, Wang L, Sun Y. Wogonoside inhibits polysaccharide-induced angiogenesis in vitro and in vivo via toll-like receptor 4 signal transduction. Toxicology 2009; 259:10-17. doi:

13. Huang WH, Lee AR, Yang CH. Antioxidative and antiinflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis Georgi. Biosci Biotechnol Biochem 2006; 70:2371-2380. doi:

14. Gao ZH, Huang KX, Yang XL, Xu HB. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochem Biophys Acta 1999; 1472:643-650.

15. Woźniak D, Dryś A, Matkowski A. Antiradical and antioxidant activity of flavones from Scutelariae baicalensis radix. Nat Prod Res 2015; 29:1567-1570. doi:

16. Park BK, Heo MY, Park H, Kim HP. Inhibition of TPA-induced cyclooxygenase-2 expression and skin inflammation in mice by wogonin, a plant flavone from Scutellaria radix. Eur J Pharmacol 2001; 425:153-157.

17. Guo QL, Zhao L, You QD, Yang Y, Gu HY, Song GL et al. Antihepatitis B virus activity of wogonin in vitro and in vivo. Antiviral Res 2007; 74:16-24. doi:

18. Wu JA, Attele AS, Zhang L. Anti-HIV activity of medicinal herbs: usage and potential development. Am J Chin Med 2001; 29:69-81.

19. Li BQ, Fu T, Yao DY, Mikovits JA, Ruscetti FW, Wang JM. Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun 2000; 276:534-538.

20. Liu IX, Durhan DG., Richards RM. Baicalin synergy with beta-lactam antibiotics against methicillinresistant Staphylococcus aureus and other beta-lactam resistant strains of S. aureus. J Pharm Pharmacol 2000; 52:361-366. doi:

21. Chan BCL, Margaret I, Clara BS, Claude J, Carine G, Marc L. et al. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J Ethnopharmacol 2011; 137:767-773. doi:

22. Heo H, Shin YS, Cho WH, Choi YS, Kim H, Kwon YK. Memory improvement in ibotenic acid induced model rats by extracts of Scutellaria baicalensis. J Ethnopharmacol 2009; 122:20-27. doi:

23. Hui KM, Huen MSY, Wang HY, Zheng H, Sigel E, Baur R. et al. Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem Pharmacol 2002; 64:1415-1424.

24. Szafer W. Ogólna geografia roślin. PWN, Warszawa, 1964.

25. Lee JI, Ahn SD. Variation of yield and major agronomic characters under different plant densities of Scutellaria baicalensis Georgii. KJCS 1988; 33:1-4.

26. Bochořáková H, Paulová H, Slanina J, Musil P, Táborská E. Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytother Res 2003; 17:640-644. doi:

27. Heuberger H, Bauer R, Friedl F, Heubl G, Hummelsberger J, Nögel R, et. al. Cultivation and breeding of Chinese medicinal plants in Germany. Planta Med 2010; 76:1956-1962.

28. Yuan QJ, Zhang ZJ, Hu J, Guo LP, Shao AJ, Huang LQ. Impacts of recent cultivation on genetic diversity pattern of a medicinal plant, Scutellaria baicalensis (Lamiaceae). BMC Genetics 2010; 11(29):1-13. doi:

29. Polish Pharmacopoeia 6th ed., 2002. Office of Registration of Medicinal Products, Medical Devices and Biocidal Products. Polish Pharmaceutical Society. Warszawa, p.150.

30. Kosakowska O, Bączek K, Przybył JL, Pióro-Jabrucka E, Węglarz Z. Chemical variability of common skullcap (Scutellaria galericulata L.) wild growing in the area of eastern Poland. Herba Pol 2016; 62(3):7-19. doi:

31. Su S, He CM, Li LC, Chen KJ, Zhou TS. Genetic characterization and phytochemical analysis of wild and cultivated populations of Scutellaria baicalensis. Chem Biodiver 2008; 5:1353-1363.

32. Takagi S, Yamaki M, Inoue K. Flavone di-C-glycosides from Scutellaria baicalensis. Phytochem 1981; 20(10):2443-2444. doi:

33. Tomimori T, Miyaichi Y, Imoto Y. Studies on the constituents of Scutellaria species II. On the flavonoid constituents of the roots of Scutellaria baicalensis Georgi. Yakugaku Zasshi 1983; 103(6):607-611.

34. Tomimori T, Miyaichi Y, Imoto Y, Kizu H, Suzuki C. Studies on the constituents of Scutellaria species IV. On the flavonoid constituents of the root of Scutellaria baicalensis Georgi. Yakugaku Zasshi 1984; 104(5):529-534.

35. Stojakowska A, Malarz J. A quantitative RP-HPLC determination of flavonoids in the roots of Scutellaria baicalensis Georgi. Herba Pol 1998; 44(4):300-306.

36. Islam MN, Downey F, Ng CKY. Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis, Scutellaria lateriflora, Scutellaria racemosa, Scutellaria tomentosa and Scutellaria wrightii by LCDAD- MS. Metabolomics 2011; 7(3):446-453. doi:

37. Makino T, Hishida A, Goda Y, Mizukami H. Comparison of the major flavonoid content of S. baicalensis, S. lateriflora, and their commercial products. J Nat Med 2008; 62(3):294-299. doi:

38. Zgórka G, Hajnos A. The application of solid-phase extraction and reversed phase high-performance liquid chromatography for simultaneous isolation and determination of plant flavonoids and phenolic acids. Chromatographia 2003; 57:77-80. doi:

39. Chen G, Ying X, Ye J. Differentiation of Scutellariae radix from Astragali radix by capillary electrophoresis with electrochemical detection. Analyst 2000; 125:815-818. doi:

40. Polish Pharmacopoeia 9th ed., 2011. Office of Registration of Medicinal Products, Medical Devices and Biocidal Products. Polish Pharmaceutical Society. Warszawa.

41. Polish Pharmacopoeia 10th ed., 2014. Office of Registration of Medicinal Products, Medical Devices and Biocidal Products. Polish Pharmaceutical Society. Warszawa.

42. Canter PH, Thomas H, Ernst E. Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trend Biotechnol 2005; 23:180-185. doi:

43. Babu KS, Srinivasa BS, Sastry K, Hara K, Madhusudana R. Synthesis and in vitro study of novel 7-O-acyl derivatives of oroxylin A as antibacterial agents. Bioorg Med Chem Lett 2005; 15:3953-3956.

44. Song X, Chen Y, Sun Y, Lin Y, Qin Y, Hui H et al. Oroxylin A, a classical natural product, shows a novel inhibitory effect on angiogenesis included by lipopolysaccharide. Pharmacol Rep 2012; 64:1198-1199.

45. Lee NK, Choi SH, Park SH, Park EK, Kim DH. Antiallergic activity of hesperidin is activated by intestinal microflora. Pharmacol 2004; 71:174-180. doi:

46. Donato F, Gomez MG, Rosito Goes AT, Borgs Filho C, del Fabbro L, Antunes M. Hesperidin exerts antidepressant-like effects in acute and chronic treatments in mice: possible role of l-arginine-NO-cGMP pathway and BDNF levels. Brain Res Bull 2014; 104:19-26.

47. Lin LL, Liu AJ, Liu JG, Yu XH, Qin LP, Su DF. Protective effects of scutellarin and breviscapine on brain and heart ischemia in rats. J Cardiovasc Pharmacol 2007; 50:327-32. doi:

48. Zhang GH, Wang Q, Chen JJ, Zhang XM, Tam SC, Zheng YT. The anti-HIV-1 effect of scutellarin. Biochem Biophys Res Commun 2005; 334:812-816. doi:

49. Medina JH, Paladini AC, Wolfman C, de Stein ML, Calvo D, Diaz LE. Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem Pharmacol 1990; 40:2227-2231. doi:

50. Khoo BY, Chua SL, Balaram P. Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 2010; 11:2188-2199. doi:

51. Du Q, Gu X, Cai J, Huang M, Su M. Chrysin attenuates allergic airway inflammation by modulating the transcription factors T-bet and GATA-3 in mice. Mol Med Rep 2012; 6:100-104. doi:

52. Wolfman C, Haydeé V, Paladini A, Dajas F, Medina JF. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora caerulea. Pharmacol Biochem Behav 1994; 47:1-4. doi:

Herba Polonica

From Botanical to Medical Research

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 246 179 10
PDF Downloads 158 127 8