Fumigant toxicities of essential oils and two monoterpenes against potato tuber moth (Phthorimaea operculella Zeller)

Open access

Summary

Introduction: The potato tuber moth (PTM) is the major economic pest of potato. Different approaches were tried to prevent and control this pest including natural pesticides and synthetic fumigants.

Objectives: This study was conducted to evaluate the insecticidal activity of the essential oils of thyme and myrtle. In addition to evaluating the insecticidal activity of carvacrol and eucalyptol against the different life stages of potato tuber moth using a fumigation bioassays.

Methods: Thyme and myrtle oils were extracted from wild Thymus syriacus Boiss. and wild Myrtus communis L. by hydrodistillation. Fumigation experiments were conducted on potato tuber moth of different stages of development (eggs, larvae, pupae, and adults), using standard methods. The potato tuber moth was treated for different periods using different concentrations of the essential oils. One-way analysis of variance (ANOVA) was applied on the mortality percentages data to estimate the significance of differences between treatments at p<0.05. Probit analysis was used to estimate the LC50, LC90 and LT50.

Results: Adult stage was the most sensitive to essential oils vapours with LC50 value of 0.5 μl/l air. Whereas, pupal stages were the most tolerant. The essential oil of thyme possessed the strongest fumigant toxicity against eggs with a LC50 value of 6.1 μl/l air. The two monoterpens showed varied fumigant toxicity against adult stage. Carvacrol achieved 100% mortality at 0.125 μl/l air after 6 h, and 0.025 μl/l air after 48h exposure with LT50 period of 0.5 h.

Conclusion: The present work demonstrated that T. syriacus essential oil is a promising natural fumigant against the different developmental stages of PTM.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bennett A Bennett AL Toit C. Chemical control of potato tuber moth Phthorimaea operculella (Zeller) in tobacco seedlings. Afr Plant Prot 1999; 5(2):83-88.

  • 2. Moawad SS Ebadah IMA. Impact of some natural plant oils on some biological aspects of the potato tuber moth Phthorimaea operculella (Zeller) (Lepidoptera; Gelechiidae). Res J Agr Biol Sci 2007; 3(2):119-123.

  • 3. Clough GH Rondon Si DeBano SJ David N Hamm PB. Reducing tuber damage by potato tuber worm (Lepidoptera: Gelechiidae) with cultural practices and insecticides. J Econ Entomol 2010; 103(4):1306-1311.

  • 4. Hafez El-kady. Insecticide resistance in potato tuber moth Phthorimaea operculella Zeller in Egypt. J Am Sci 2011; 7(10):263-266.

  • 5. Dogramaci M Tingey M. Comparison of insecticide resistance in a North American field population and laboratory colony of potato tuber worm (Lepidoptera: Gelechiidae). J Pest Sci 2008; 81:17-22. doi: http://dx.doi.org//10.1007/s10340-007-0178-5

  • 6. Llanderal-Cazares C Lagunes-Tejada A Carrillo-Sánchez JL Sosa-Moss C Vera-Graziano J Bravo-Mojica H. Susceptibility of Phthorimaea operculella (Zeller) to insecticides. J Entomol Sci 1996; 31:420-426.

  • 7. Kroschel J Management of the potato tuber 6th World Potato Congress August 20 – 26 Boise Idaho USA 2006. www.potatocongress.org//Dr_Jurgen_Krosc.

  • 8. Kroschel J Koch W. Studies on the use of chemicals botanicals and Bacillus thuringiensis in the management of the potato tuber moth in potato stores. Crop Prot 1996; 15(2):197-203. doi: http://dx.doi.org//10.1016/0261-2194(95)00126-3

  • 9. Kay IR. Testing insecticides against Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) using a tomato plant bioassay. Plant Prot Q 2006; 21(1):20-24.

  • 10. Vaneva-Gancheva T Dimitrov Y. Chemical control of the potato tuber moth Phthorimaea operculella (Zeller) on tobacco. Bulg J Agric Sci 2013; 19(5):1003-1008.

  • 11. Haines CP. The potato tuber moth Phthorimaea operculella Zeller a bibliography of recent literature and a review of its biology and control on potatoes in the field and in store. Tropical Products Institute London 1977.

  • 12. WMO. Scientific assessment of ozone depletion: World Metrological Organization global ozone research and monitoring project. Report No. 37 WMO Geneva Switzerland 1995.

  • 13. Bell CH Wilson SM. Phosphine tolerance and resistance in Trogoderma granarium Everts (Coleoptera: Dermestidae). J Stored Prod. Res 1995; 31:199-205. doi: http://dx.doi.org/10.1016/0022-474x(95)00012-v

  • 14. Nakakita H Winks RG. Phosphine resistance in immature stages of a laboratory selected strain of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Stored Prod Res 1981; 17(2):43-52. doi: http://dx.doi.org/10.1016/0022-474x(81)90016-3

  • 15. Prakash A Rao J. Botanical Pesticides in Agriculture. CRC Press Inc. 2000 Corporate Bld. N.W. Boca Raton FL USA 1997; pp. 480.

  • 16. Papachristos DP Karamanoli KI Stamopoulos DC Menkissoglu-Spiroudi U. The relationship between the chemical composition of three essential oils and their insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag Sci 2004; 60(5):514-520. doi: http://dx.doi.org/10.1002/ps.798

  • 17. Tayoub G Abu Alnaser A Ghanem I. Fumigant activity of leaf essential oil from Myrtus communis L. against the Khapra Beetle. Int J Med Arom Plants 2012; 2(1):207-213.

  • 18. Regnault-Roger C Hamraoui A. Fumigant toxic activity and reproductive inhibition induced by monoterpenes on Acanthoscelides obtectus (Say) (Coleoptera) a bruchid of kidney bean (Phaseolus vulgaris L.). J Stored Prod Res 1995; 31(4):291-299. doi: http://dx.doi.org/10.1016/0022-474x(95)00025-3

  • 19. Conti B Canale A Cioni PL Flamini G Rifici A. Hyptis suaveolens and Hyptis spicigera (Lamiaceae) essential oils: qualitative analysis contact toxicity and repellent activity against Sitophilus granarius (L.) (Coleoptera: Dryophthoridae). J Pest Sci 2011; 84(2):219-228. doi: http://dx.doi.org/10.1007/s10340-010-0343-0

  • 20. Ormachea A. Traditional use of muna (Minthostachys spp. Labiatae) in phytosanitary aspects of Cusco and Puno [Peru plant protection]. Revista Peruana de Entomologia (Peru) 1979.

  • 21. Raman KA Booth RH Palacio M. Control of the PTM Phthorimaea operculella (Zeller) in rustic potato stores. Trop ScL 1987; 2Z:175-194.

  • 22. Sharma RN Joshi V Zadu G Bhosale AS Gupto A Patwardhan S et al. Oviposition deterrence activity in some Lamiaceae plants against some insect pests. Z. Naturforsch Sect BioscL 1981; 36(1-2):122-125.

  • 23. Khashyap NP Bhagat RH Sharma DC Suri SM. Efficacy of some useful plant leaves for the control of the potato tuber motli Phthorimaea operculella (Zell.) in stores. J Entomol Res 1992; 16(3):223-227.

  • 24. Sharaby A Abdel-Rahman H Abdel-Aziz SH Moawad S. Susceptibility of different potato varieties to infestation by potato tuber moth and role of the plant powders on their protection. IOSR J Agric and Vetr 2014; 6(4):71-80.

  • 25. Ministry of Agriculture. Annual Agricultural Satirical Abstract Syria. 2014.

  • 26. Saour G. Effect of thiacloprid against the potato tuber moth Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). J Pest Sci 2008; 81(1):3-8. doi: http://dx.doi.org/10.1007/s10340-007-0188-3

  • 27. Ibrahim MY. Study of effect of temperatures on the natural death and the biotic potential of potato tuber moth Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) and used of some plant extracts as insect repellents against potato tuber moth under lab. conditions. Agricultural Scientific Research (Syria). 2008. 35(12):1-10.

  • 28. Clevenger JF. Apparatus for the determination of volatile oil. J. Am Pharm Assoc 1928; 17:345-349. doi: http://dx.doi.org/10.1002/jps.3080170407

  • 29. Al-Mariri A Swied G Oda A Al Hallab L. Antibacterial activity of Thymus syriacus Boiss essential oil and its components against some Syrian gram-negative bacteria isolates. Iran J Med Sci 2013; 38(2 Suppl):180-186.

  • 30. Al-Mariri A Swied G Oda A Al-Hallab L. Variation in Myrtus communis L. Essential oil composition and its antibacterial activities components. Pak J Sci Ind Res Ser B: Biol Sci 2016; 59(1). In press.

  • 31. Bajpai VK Al-Reza SM Choi UK Lee JH Kang SC. Chemical composition antibacterial and antioxidant activities of leaf essential oil and extracts of Metasequioa glyptostroboides Miki ex Hu. Food Chem Toxicol 2009; 47(8):1876-1883. doi: http://dx.doi.org/10.1016/j.fct.2009.04.043

  • 32. Tayoub G Odeh A Ghanem I. Chemical composition and efficacy of essential oil from Juniperus foetidissima Willd against the Khapra Beetle. Int J Med Arom Plants 2012; 2(3):501-508.

  • 33. Tayoub G Odeh A Ghanem I. Chemical composition and fumigation toxicity of Laurus nobilis L. and Salvia officinalis L. essential oils on larvae of khapra beetle (Trogoderma granarium Everts). Herba Pol 2012; 58(2): 26-37.

  • 34. Saour G Makee H. Radiation induced sterility in male potato tuber moth Phthorimaea operculella Zeller (Lep. Gelechiidae). J Appl Entomol 1997; 121(1-5):411-415.

  • 35. Gamboa M Notz A. Biology of Phthorimaea operculella in potato. Revista de la Facultad de Agronomia Universidad Central de Venezuela 1990; 16(3-4):245-257.

  • 36. Finney DJ. Probit analysis 3rd ed. Cambridge University London UK. 1971; 19-76.

  • 37. Obeng-Ofori D Reichmuth CH. Bioactivity of eugenol a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product Coleoptera. International Pest Manag Sci 1997; 43(1):89-94. doi: http://dx.doi.org/10.1080/096708797229040

  • 38. Isman MB Wan AJ Passreiter CM. Insecticidal activity of essential oils to the tobacco cutworm Spodoptera litura. Fitoterapia 2001; 72(1):65-68. doi: http://dx.doi.org/10.1016/s0367-326x(00)00253-7

  • 39. Rajendran S Sriranjini V. Plant products as fumigants for stored-product insect control. J Stored Prod Res 2008; 44(2):126-135. doi: http://dx.doi.org/10.1016/j.jspr.2007.08.003

  • 40. Rafiee-Dastjerdi H Khorrami F Razmjou J Esmaeilpour B Golizadeh A Hassanpour M. The efficacy of some medicinal plant extracts and essential oils against potato tuber moth Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). J Crop Prot 2013; 2(1):93-99.

  • 41. Saroukolai AT Moharramipour S Meshkatalsadat MH. Insecticidal properties of Thymus persicus essential oil against Tribolium castaneum and Sitophilus oryzae. J Pest Sci 2010; 83(1):3-8. doi: http://dx.doi.org/10.1007/s10340-009-0261-1

  • 42. Ayvaz A Sagdic O Karaborklu S Ozturk I. Insecticidal activity of the essential oils from different plants against three stored-product insects. J Insect Sci 2010; 10(1):21. doi: http://dx.doi.org/10.1673/031.010.2101

  • 43. Clemente-Casares P Pina S Buti M Jardi R Martín M Bofill-Mas S et al. Hepatitis E virus epidemiology in industrialized countries. Emerg Infect Dis 2003; 9(4):449. doi: http://dx.doi.org/10.3201/eid0904.020351

  • 44. Jahanshir S. Fumigant toxicity of four plant essential oils against Tribolium castaneum (Herbst) and T. confusum (Du VaL.). Tech J Engin App Sci 2013; 3(22):3158-3162.

  • 45. Kostyukovsky M Rafaeli A Gileadi C Demchenko N Shaaya E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest Manag Sci 2002; 58(11):1101-1106. doi: http://dx.doi.org/10.1002/ps.548

  • 46. Rozman V Kalinovic I Korunic Z. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. J Stored Prod Res 2007; 43(4):349-355. doi: http://dx.doi.org/10.1016/j.jspr.2006.09.001

  • 47. Lee BH Annis PC Tumaalii F Choi WS. Fumigant toxicity of essential oils from the Myrtaceae family and 18-cineole against 3 major stored-grain insects. J Stored Prod Res 2004; 40(5):553-564. doi: http://dx.doi.org/10.1016/j.jspr.2003.09.001

  • 48. Lee BH Choi WS Lee SE Park BS. Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil Sitophilus oryzae (L.). Crop Prot 2001; 20(4):317-320. doi: http://dx.doi.org/10.1016/s0261-2194(00)00158-7

  • 49. Lee S Peterson CJ Coats JR. Fumigation toxicity of monoterpenoids to several stored product insects. J Stored Prod Res 2002; 39(1): 77-85. doi: http://dx.doi.org/10.1016/s0022-474x(02)00020-6

  • 50. Erler F. Fumigant activity of six monoterpenoids from aromatic plants in Turkey against two stored product pests confused flour beetle Tribolium confusum and Mediterranean flour moth Ephestia kuehniella. J Plant Dis Prot 2005; 112(6): 602-611. doi: http://dx.doi.org/10.1007/bf03356158

  • 51. Ojimelukwe PC Adler C. Potential of zimtaldehyde 4-allyl-anisol linalool terpineol and other phytochemicals for the control of the confused flour beetle (Tribolium confusum J. d. V.) (Col. Tenebrionidae). Anzeiger für Schädlingskunde. J Pest Sci 1999; 72(4):81-86.

  • 52. Isman MB Wan AJ Passreiter CM. Insecticidal activity of essential oils to the tobacco cutworm Spodoptera litura. Fitoterapia 2001; 72(1): 65-68. doi: http://dx.doi.org/10.1016/s0367-326x(00)00253-7

  • 53. Houghton PJ Ren Y Howes MJ. Acetyl-cholinesterase inhibitors from plants and fungi. Nat Prod Rep 2006; 23(2):181-199. doi: http://dx.doi.org/10.1002/chin.200632279

  • 54. Ge HM Zhu CH Shi da H Zhang LD Xie DQ Yang J et al. Hopeahainol A: an acetylcholinesterase inhibitor from Hopea hainanensis. Chemistry 2008; 14(1):376-81. doi: http://dx.doi.org/10.1002/chem.200700960

  • 55. Enan EE. Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem Physiol 2005; 59(3):161-171. doi: http://dx.doi.org/10.1002/arch.20076

  • 56. De-Oliveira ACAX Ribeiro-Pinto LF Paumgartten FJR. In vitro inhibition of CYP2B1 monooxygenase by b-myrcene and other monoterpenoid compounds. Toxicol Lett 1997; 92(1):39-46. doi: http://dx.doi.org/10.1016/s0378-4274(97)00034-9

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 345 240 7
PDF Downloads 144 98 2