Incubation methods for the detection of fungi associated with caraway (Carum carvi L.) seeds

Krystyna Tylkowska 1 , Paweł Serbiak 1 , and Dorota Szopińska 1
  • 1 Department of Plant Pathology, Seed Science and Technology, Division of Seed Science and Technology, Faculty of Horticulture and Landscape Architecture, Poznań University of Life Sciences, Szamotulska 28, Baranowo, 62-081 Przeźmierowo, Poland


Introduction: Infestation with fungi may significantly affect the quality of seeds. However, there is no standard method for caraway (Carum carvi L.) seed health testing.

Objective: The aim of the present study was to determine the most efficient method of the detection of fungi associatyed with caraway seeds.

Methods: Seven incubation methods for evaluation of health of these seeds were compared: deep freeze blotter test, blotter test with mannitol, blotter test with polyethylene glycol, agar tests on potato-dextrose-agar (PDA) and on reduced PDA (RPDA) without seed disinfection, and agar tests on PDA and RPDA after seed disinfection. The evaluation was performed after 10 and 14 days of incubation.

Results: Thirty two fungal genera were associated with the seeds. Alternaria alternata, Cladosporium spp. and Rhizopus nigricans were identified most frequently. Prolongation of incubation time favoured growth of Fusarium spp. and R. nigricans to the highest extent.

Conclusions: The greatest seed infestation with fungi, especially Alternaria spp., was observed in the deep freeze blotter test followed by the blotter test with mannitol. Both of them could be recommended for further study on caraway seed health testing.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Sedláková J, Kocurková B, Kubáň V. Determination of essential oils content and composition in caraway (Carum carvi L.). Czech J Food Sci 2001; 19(1):31-6.

  • 2. Simic A, Rančic A, Sokovic MD, Ristic M, Grujic-Jovanovic S, Vukojevic J et al. Essential oil composition of Cymbopogon winterianus and Carum carvi and their antimicrobial activities. Pharm Biol 2008; 46(6):437-41.

  • 3. Seidler-Łożykowska K, Kędzia B, Karpińska E, Bocianowski J. Microbiological activity of caraway (Carum carvi L.) essential oil obtained from different origin. Acta Sci Agron 2013; 35(4), doi: 10.4025/actasciagron.v35i4.16900.

  • 4. Hartmans KJ, Diepenhorst P, Bakker W, Gorris LGM. The use of carvone in agriculture: sprout suppression of potatoes and antifungal activity against potato tuber and other plant diseases. Ind Crop Prod 1995; 4(1):3-13.

  • 5. Iacobellis NS, Lo Cantore P, Capasso F, Senatore F. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem 2005; 53(1):57-61.

  • 6. Zheng GQ, Kenney PM, Lam LKT. Anethofuran, carvone, and limonene: potential cancer chemoprotective agents from dill weed oil and caraway oil. Planta Med 1992; 58(4):338-41.

  • 7. Kamaleeswari M, Deeptha K, Sengottuvelan M, Nalini N. Effect of dietary caraway (Carum carvi L.) on aberrant crypt foci development, fecal steroids, and intestinal alkaline phosphatase activities in 1,2-dimethylhydrazine-induced colon carcinogenesis. Toxicol Appl Pharmacol 2006; 214(3):290-6.

  • 8. Kamaleeswari M, Nalini N. Dose-response efficacy of caraway (Carum carvi L.) on tissue lipid peroxidation and antioxidant profile in rat colon carcinogenesis. J Pharm Pharmacol 2006; 58(8):1121-30.

  • 9. Eddouks M, Lemhadri A, Michel JB. Caraway and caper: potential anti-hyperglycaemic plants in diabetic rats. J Ethnopharmacol 2004; 94(1):143-8.

  • 10. Lahlou S, Tahraoui A, Israili Z, Lyoussi B. Diuretic activity of the aqueous extracts of Carum carvi and Tanacetum vulgare in normal rats. J Ethnopharmacol 2007; 110(3):458-63.

  • 11. Samojlik I, Lakić N, Mimica-Dukić N, Đaković-Švajcer K, Božin B. Antioxidant and hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and caraway (Carum carvi L.) (Apiaceae). J Agric Food Chem 2010; 58(15):8848-53.

  • 12. Carvalho CCCR, Fonseca MMR. Carvone: Why and how should one bother to produce this terpene. Food Chem 2006; 95:413-422.

  • 13. Machowicz-Stefaniak Z, Zalewska E. Biodiversity of fungi colonizing different parts of caraway (Carum carvi L.), EJPAU 2008; 11 (1):#21,

  • 14. Machowicz-Stefaniak Z, Zimowska B. Grzyby przenoszone przez materiał siewny roślin zielarskich. Acta Agrob 2000; 53(2):25-38.

  • 15. Mačkinaitė R. Fungi diversity on wild and cultivated common caraway (Carum carvi L.) seeds. Žemdirbystė – Agriculture 2010; 97(4):73-84.

  • 16. Mačkinaitė R. Internal mycobiota of wild and cultivated common caraway (Carum carvi L.) seeds. Žemdirbystė – Agriculture 2011; 98(2):183-94.

  • 17. Mačkinaitė R. Potential pathogens of common caraway (Carum carvi L.) seeds and search for measures suppressing their spread. Žemdirbystė – Agriculture 2012; 99(2):179-88.

  • 18. Mazur S, Nawrocki J. Fungal diseases threat on caraway plantations in the south region of Poland. Acta Fyto Zoot 2004; 7:201-3.

  • 19. Odstrčilova L. Changes in the occurrence of mycoflora on caraway seeds after fungicide application. Plant Protect Sci 2007; 43:146-50.

  • 20. Machowicz-Stefaniak Z, Zalewska E. Occurrence of Colletotrichum dematium on selected herbs species and preparations inhibiting pathogen’s growth and development in vitro. Ecol Chem Eng S 2011; 18(4):465-78.

  • 21. Machowicz-Stefaniak Z, Zalewska E, Król E. Occurrence, harmfulness and morphological structures of Colletotrichum gleosporioides (Penz.) Sacc. (teleomorph: Glomerella cingulata (Stonem.) Spauld. Et Schrenk). Acta Sci Pol, Hortorum Cultus 2011; 10(3):39-52.

  • 22. Zalewska E. Pathogenicity of Colletotrichum dematium (Fr.) Grove to caraway Carum carvi L. Acta Agrobot 2010; 63(1):137-47.

  • 23. Reuveni R. Fusarium equiseti – a new cause of cumin spice plant wilt in Israel. Plant Disease 1982; 66(6):498-499.

  • 24. Logrieco A, Moretti A, Solfrizzo M. Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin J 2009; 2(2):129-140.

  • 25. Regina M, Rama T. Biochemical changes in stored caraway seeds due to fungi. Indian Phytopathol 1992; 45(3):384.

  • 26. Cappelli C, Covarelli L, Methods used in seed pathology and their recent improvements. Phytopathol Pol 2005; 35:11-18.

  • 27. ISTA. International Rules for Seed Testing. Annexe to Chapter 7 Seed Health Testing, Seed Health Testing Methods. The International Seed Testing Association, Bassersdorf, Switzerland 2012.

  • 28. Machado JC, Cautinho WM, Guimarães RM, Vieira MGGC, Ferreira DF. Use of osmotic solutes to control seed germination of rice and common bean in seed health blotter tests. Seed Sci Technol 2008; 36(1):66-75.

  • 29. Machado JC, Guimaraes RM, Vieira MGGC, Souza RM, Pozza EA. Use of water restriction technique in seed pathology. Seed Testing International 2004; 128:14-18.

  • 30. Machado JC, Oliveira JA, Vieira MGGC, Alves MC. Control of soybeen seeds germination in seed health tests using water restriction technique. On-line. Rev Bras Sementes 2003; 25(2). doi:

  • 31. Rosińska A, Jarosz M, Szopińska D, Dorna H, Tylkowska K. Comparison of methods for detecting fungi in Silybum marianum (L.) Gaertn. seeds. Folia Hort 2013; 25(2):107-115. doi:

  • 32. Sauer DB, Burroughs R. Disinfection of seed surfaces with sodium hypochlorite. Phytopathology 1986; 76:745-749.

  • 33. Swagel EN, Van H Bernhard A, Ellmore GS. Substrate water potential constraints on germination of the strangle fig Ficus aurea (Moraceae). Am J Bot 1997; 84:716-722.

  • 34. Michel BE, Kaufmann MR. The osmotic potential of polyethylene glycol 6000. Plant Physiol 1973; 51:914-916.

  • 35. Ellis MB. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute Kew, England 1971.

  • 36. Ellis MB. More Dematiaceous Hyphomycetes. Commonwealth Mycological Institute Kew, England 1976.

  • 37. Machado JC, Langerak CJ, Jaccoud-Filho DS. Seed-borne fungi: A contribution to routine seed health analysis. International Seed Testing Association. Bassersdorf 2002.

  • 38. Mathur SB, Kongsdal O. Common laboratory seed health testing methods for detecting fungi. International Seed Testing Association, Bassersdorf, Switzerland 2003.

  • 39. Tischler W. Grundzüge der terrestrischen Tierökologie. Friedrich Vieweg und Sohn, Braunschweig, Germany1949.

  • 40. Szopińska D, Tylkowska K, Deng ChJ, Gao Y. Comparison of modified blotter and agar incubation methods for detecting fungi in Zinnia elegans seeds. Seed Sci Technol 2012; 40:32-42.

  • 41. Woody MA, Chu FS. Toxicology of Alternaria mycotoxins. In: Chełkowski J, Visconti A, eds. Alternaria biology, plant diseases and metabolites. Amsterdam, Elsevier, 1992:409-434.

  • 42. Bulajić A, Djekić I, Lakić N, Krstić B. The presence of Alternaria spp. on the seed of Apiaceae plants and their influence on seed emergence. Arch Biol Sci 2009; 61(4):871-881.

  • 43. ISTA. International Rules for Seed Testing. Annexe to Chapter 7: Seed Health Testing Methods. 7-001a: Blotter method for the detection of Alternaria dauci on Daucus carota. ISTA, Bassersdorf, Switzerland 2014a.

  • 44. ISTA. International Rules for Seed Testing. Annexe to Chapter 7: Seed Health Testing Methods. 7-001b: Blotter method for the detection of Alternaria radicina on Daucus carota. ISTA, Bassersdorf, Switzerland 2014b.


Journal + Issues