Novel method of detection of phenylpropanoids of Rhodiola roots species

Agnieszka Gryszczyńska 1 , Bogna Opala 1 , Anna Krajewska-Patan 2 , Zdzisław Łowicki 1 , Waldemar Buchwald 3 , Sebastian Mielcarek 1 , Anna Bogacz 4 , Monika Karasiewicz 1 , Dariusz Boroń 5 , Bogusław Czerny 6 ,  and Przemysław M. Mrozikiewicz 4
  • 1 Department of Quality Control of Medicinal Products and Dietary Supplements Institute of Natural Fibres and Medicinal Plants Libelta 27 61-707 Poznań, Poland
  • 2 Department of Pharmacology and Experimental Biology Institute of Natural Fibres and Medicinal PlantsLibelta 27 61-707 Poznań, Poland
  • 3 Team of Botany and Technology of Medicinal Plants Department of Botany, Breeding and Agricultural Technology Institute of Natural Fibres and Medicinal Plants Kolejowa 2 62-064 Plewiska/Poznań, Poland
  • 4 Department of Quality Control of Medicinal Products and Dietary Supplements Institute of Natural Fibres and Medicinal Plants Libelta 27 61-707 Poznań, Poland / Laboratory of Experimental Pharmacogenetics Department of Clinical Pharmacy and Biopharmacy Poznań University of Medical Sciences Św. Marii Magdaleny 14 61-861 Poznań, Poland
  • 5 Departament of Histology and Embriology Medical University of Silesia Jordana 19 41-808 Zabrze, Poland
  • 6 Department of Quality Control of Medicinal Products and Dietary Supplements Institute of Natural Fibres and Medicinal Plants Libelta 27 61-707 Poznań, Poland / Department of General Pharmacology and Pharmacoeconomics Pomeranian Medical University Żołnierska 48 70-204 Szczecin, Poland


The aim of the study was the identification and quantitative analysis of phenylpropanoid compounds in the roots of Rhodiola species. Rosavin, rosarin and rosin were determined in the roots of R. kirilowii and R. rosea from the field cultivation, Institute of Natural Fibres and Medicinal Plants. For the quantitative analysis, the ultra performance liquid chromatography - tandem mass spectrometry (UPLC-ESI MS/MS, Waters) was used. The results showed differences in the quantitative and qualitative assessments of these two species. In the root of R. kirilowii the presence of phenylpropanoids was not confirmed. In R. rosea the most common phenylpropanoid was rosavin (0.022%). The UPLC-MS/MS studies allowed to use this analytical method for determination of phenylpropanoids in the accordance with the requirements of ICH.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Wolski T, Baj T, Ludwiczuk A, Głowniak K, Czarnecka G. Rhodiola genus taxonomy chemical composition, activity and use also phyochemical analysis of roots of two species of Rhodiola: Rhodiola rosea L. and Rhodiola quadrifida (Pall.) Fish et Mey. Postępy Fitoterapii 2008; 11(1):2-14.

  • 2. Gryszczyńska A, Mielcarek S, Buchwald W. The determination of flavan-3-ol content in the root of Rhodiola Kirilowii. Herba Pol 2011;51(1):27-37.

  • 3. Cui S, Hu X, Chen X, Hu Z. Determination of p-thyrosol and salidroside in three samples of Rhodiola crenulata and one of Rhodiola Kirilowii by capillary zon electrophoresis. Anal Bioanal Chem 2003; 377:370-374.

  • 4. Kelly GS. Rhodiola rosea: A Possible Plant Adaptogen. Altern Med Rev 2001; 6(3):293-302.

  • 5. Zych M, Furmanowa M, Krajewska-Patan A, Łowicka A, Dreger M, Mendlewska S. Micropropagation of Rhodiola Kirilowii plants using encapsulated axillary buds and callus. Acta Biol Cracov Ser Bot 2005; 47(2):83-87.

  • 6. Zuo G, Li Z, Chen L, Xu X. Activity of compounds from Chinese herbal medicine Rhodiola Kirilowii (Regel) Maxim against HCV NS 3 serine protease. Antiviral Res 2007; 76:86-92.

  • 7. Yousef GG, Grace MH, Cheng DM, Belolipov IV, Raskin I, Lila MA. Comparative Phytochemical characterization of three Rhodiola species. Phytochemistry 2006; 67:2380-2391.

  • 8. Yang LM, Hu R, Fu HZ. A new cyano-compound from Rhodiola kirilowii. ChinHerb Med 2011, 3(4):241-243.

  • 9. Patselo A, Jalonen J, Tolonen A, Identification of flavonoids of Rhodiola rosea by liquid chromatographytandem mass spectrometry. J Chromatogr A 2006; 1112:224-231.

  • 10. Diermen D, Marston A, Bravo J, Reist M, Carrups PA, Hostettmann K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J Ethnopharmacol 2009; 122:397-401.

  • 11. Wiedenfeld H, Dumaa M, Malinowski M, Furmanowa M, Narantuya S. Phytochemical and analytical studies of extracts from Rhodiola rosea and Rhodiola quadrifida. Pharmazie 2007; 62(4):308-311.

  • 12. Panossian A, Wilkman G, Sarris J. Rosenroot (Rhodiola rosea): tradicional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 2010; 17:481-493.

  • 13. Martin J, Pomahačová B, Dušek J, Dušková J. In vitro culture establishment of Schinensis (turz.) Baill. and Rhodiola rosea L., two adaptogenic compounds producing plants. J Phytology 2010, 2(11):80-87.

  • 14. Spasov AA, Wikman GK, Mandricov VB, Mironova IA, Neumoin VV. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue on students caused by stress during an examination period with a repeated low-dose regiment. Phytomedicine 2000; 7(2):85-89.

  • 15. Hung SK, Perry R, Ernst E. The effectiveness and efficacy of Rhodiola rosea L.: a systematic review of randomized clinical trials. Phytomedicine 2011; 18(4):235-44.

  • 16. Tolonen A, Hohtola A, Jalonen J. Liquid chromatographic analysis of phenylpropanoids from Rhodiola rosea extracts. Chromatographia 2003; 57(9-10):577-579.

  • 17. Tolonen A, Pakonen M, Hohtola A, Jalonen J. Phenylpropanoid glycosides from Rhodiola rosea. J. Chem Pharm Bull 2003; 51(4):467-70.


Journal + Issues