First report of segmented filamentous bacteria associated with Rhigonema sp. (Nematoda: Rhigonematidae) dwelling in hindgut of Riukiaria sp. (Diplopoda: Xystodesmidae)

Open access

Summary

We morphologically and molecularly characterized segmented filamentous bacteria (SFB) associated with Rhigonema sp. nematodes in millipede hindguts. Seventy-three Riukiaria sp. millipedes were collected from a broad-leaf forest in Japan, and nematodes were excised from the millipede’s hindguts. The occurrence rate of SFB associated with nematodes was 24 % (10/41) for males, 47 % (14/30) for females, and 100 % (2/2) for juveniles. Genomic DNA was extracted from four SFB-rich nematode heads, and we obtained 40 bacterial clones via analysis of nearly full-length 16S rDNA gene sequences. At the phylum level, Firmicutes, Proteobacteria, and Verrucomicrobia accounted for 55 %, 40 %, and 5 % of SFB, respectively. In Firmicutes, Clostridiaceae (28 %) and Lachnospiraceae (15 %) were the dominant groups. Our sequences were divided into seven and three subclades between Firmicutes and Proteobacteria in the phylogenetic tree. In the Firmicutes clade, eight sequences were classified as Lachnospiraceae with a bootstrap value >83 %. A phylogenetic tree involving known uncultured Lachnospiraceae sequences characterized the phylogenetic position of SFB associated with nematodes. Our results suggest that the association of SFB with nematode bodies was probably incidental and that SFB are not always present in millipede hindguts. Our bacterial groups corresponded to those of arthropod hindgut, and SFB associated with nematodes were inferred to belong to Lachnospiraceae. Because the Lachnospiraceae sequences obtained in this study showed specific lineages that differed from all the known deposited sequence data, these groups may be unique to Riukiaria sp.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Altschul S.F. Madden T.L. Schäffer A.A. Zhang J. Zhang Z. Miller W. Lipman D.J. (1997): Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389 – 3402. DOI: 10.1093/nar/25.17.3389

  • Boggs C. L. (1981): Nutritional and life-history determinants of resource allocation in holometabolous insects. Am. Nat. 117: 692 – 709

  • Brune A. Dietrich C. (2015): The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69: 145 – 166. DOI: 10.1146/annurev-micro-092412-155715

  • Carta L.K. Osbrink W. (2005): Rhabditis rainai n. sp. (Nematoda : Rhabditida) associated with the Formosan subterranean termite Coptotermes formosanus (Isoptera : Rhinotermitidae). Nematology 7: 863 – 879. DOI: 10.1163/156854105776186299

  • Engel P. Moran N.A. (2013): The gut microbiota of insects: diversity in structure and function. FEMS Microbiol. Rev. 37: 699 – 735. DOI: 10.1111/1574-6976.12025

  • Felsenstein J. (1985): Confidence limits on phylogenies: an approach using the Bootstrap. Evolution 39: 783 – 791. DOI: 10.2307/2408678

  • Hunt D.J. Moore D. (1995): Rhigonema trichopeplum sp. n. (Nematoda: Rhigonematidae) parasite of a millipede (Diplopoda: Spirobolida) from Myanmar. Fundam. Appl. Nematol. 18: 553 – 558

  • Ivanov I.I. Atarashi K. Manel N. Brodie E.L. Shima T. Karaoz U. Wei D. Goldfarb K.C. Santee C.A. Lynch S. V. Tanoue T. Imaoka A. Itoh K. Takeda K. Umesaki Y. Honda K. Littman D.R. (2009): Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139: 485 – 498. DOI: 10.1016/j.cell.2009.09.033

  • Kanzaki N. Ekino T. Tanaka R. Woodruff G.C. Ide T. Yoshiga T. (2016): Preliminary survey of millipede-associated nematodes in Japan: Nematode isolation from three Riukiaria spp. Nematol. Res. 43: 105 – 106 (abstract for annual meeting of the Japanese Nematological Society)

  • Katoh K. Standley D.M. (2013): MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30: 772 – 780. DOI: 10.1093/molbev/mst010

  • Klaasen H.L.B.M. Koopman J.P. Poelma F.G.J. Beynen A.C. (1992): Intestinal segmented filamentous bacteria. FEMS Microbiol. Lett. 88: 165 – 179. DOI: 10.1016/0378-1097(92)90801-T

  • Krecek R.C. Sayre R.M. Els H.J. van Niekerk J.P. Malan F.S. (1987): Fine Structure of a Bacterial Community Associated with Cyathostomes (Nematoda : Strongylidae) of Zebras. Proc. Helminthol. Soc. Wash. 54: 212 – 219

  • Kumar S. Stecher G. Tamura K. (2016): MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870 – 1874. DOI: 10.1093/molbev/msw054

  • Leidy J. (1853): A Flora and Fauna within Living Animals. Smithsonian Institution G. P. Putnam and Company New York. 67 pp.

  • Margulis L. Jorgensen J.Z. Dolan S. Kolchinsky R. Rainey F.A. Lo S.C. (1998): The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc. Natl. Acad. Sci. USA. 95: 1236 – 1241. DOI: 10.1073/pnas.95.3.1236

  • Morffe J. Hasegawa K. (2017): Rhigonema naylae n. sp. (Rhigonematomorpha: Rhigonematidae) a new parasitic nematode from a Japanese polydesmid millipede (Polydesmida: Xystodesmidae). Zootaxa 4269: 277 – 286. DOI: 10.11646/zootaxa.4269.2.6

  • Ozawa S. Vicente C.S.L. Sato K. Yoshiga T. Kanzaki N. Hasegawa K. (2014): First report of the nematode Leidynema appendiculata from Periplaneta fuliginosa. Acta Parasitol. 59: 219 – 228. DOI: 10.2478/s11686-014-0230-6

  • R Development Core Team (2016): R: a language and environment for statistical computing. R foundation for statistical computing Austria. https://www.R-project.org/

  • Sato Y. Nishihara H. Yoshida M. Watanabe M. Rondal J.D. Ohta H. (2004): Occurrence of hydrogen-oxidizing Ralstonia species as primary microorganisms in the Mt. Pinatubo volcanic mudflow deposits. Soil Sci. Plant Nutr. 50: 855 – 861. DOI: 10.1080/00380768.2004.10408546

  • Sayre R.M. Starr M.P. (1988): Bacterial Disease and Antagonisms of Nematodes. In: Poinar G.O. Jansson H.B. (Eds) Disease of Nematodes. Volume 1. Boca Raton FL: CRC Press pp. 95 – 96

  • Schauer C. Thompson C.L. Brune A. (2012): The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl. Environ. Microbiol. 78: 2758 – 2767. DOI: 10.1128/AEM.07788-11

  • Thompson C.L. Vier R. Mikaelyan A. Wienemann T. Brune A. (2012): ‘Candidatus Arthromitus’ revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environ. Microbiol. 14: 1454 – 1465. DOI: 10.1111/j.1462-2920.2012.02731.x

  • Vicente C. S. L. Ozawa S. Hasegawa K. (2018): The composition of hindgut microbiota of Periplaneta japonica in the presence of thelastomatid parasitic nematodes. Nematol Res. 48: 19 – 26. DOI: 10.3725/jjn.48.19

  • Weisburg W. G. Barns S. M. Pelletier D. A. Lane D. J. (1991): 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173 697 – 703. DOI: 10.1128/jb.173.2.697-703.1991

  • Yoon J.H. Lee S.T. Kim S.B. Kim W.Y. Goodfellow M. Park Y.H. (1997): Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int. J. Syst. Evol. Microbiol. 47: 111 – 114. DOI: 10.1099/00207713-47-1-111

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.731
5-year IMPACT FACTOR: 0.634

CiteScore 2018: 0.8

SCImago Journal Rank (SJR) 2018: 0.398
Source Normalized Impact per Paper (SNIP) 2018: 0.554

Target audience: researchers in the field of human, veterinary medicine and natural science
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 100 100 14
PDF Downloads 76 76 8