Modulation of TLR2 and TLR4 in macrophages following Trichinella spiralis infection

Open access

Summary

Parasitic helminthes can suppress and/or regulate the host immune response to allow long-term survival and chronic infection where toll-like receptors (TLRs) expressed on macrophages play essential roles in response to parasitic infection. Semi-quantitative PCR and flow cytometry studies about the modulation of TLRs and cytokine profiles in macrophages following T. spiralis infection were performed. TLRs, MyD88 and NF-κB were up-regulated by T. spiralis infection and essential to the parasite life cycles. Cytokines profiles (IL-6, IL-10, IL-12, TNF-α) were modulated during T. spiralis infection. Results suggest that T. spiralis infection may regulate the expression of TLR4 on macrophages and TLR4/MyD88/NF-κB signaling pathways. This study provides further insights into the mechanisms of TLR-mediated post-inflammatory response during T. spiralis infection.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aranzamendi C. de Bruin A. Kuiper R. Boog C.J. van Eden W. Rutten V. Pinelli E. (2013): Protection against allergic airway inflammation during the chronic and acute phases of Trichinella spiralis infection. Clin. Exp. Allergy 43(1): 103 – 115. DOI: 10.1111/cea.12042

  • Aranzamendi C. Fransen F. Langelaar M. Franssen F. van der Ley P. van Putten J.P. Rutten V. Pinelli E. (2012): Trichinella spiralis-secreted products modulate DC functionality and expand regulatory T cells in vitro. Parasite Immunol. 34(4): 210 – 223. DOI: 10.1111/j.1365-3024.2012.01353.x

  • Bai X. Wu X. Wang X. Guan Z. Gao F. Yu J. Yu L. Tang B. Liu X. Song Y. Wang X. Radu B. Boireau P. Wang F. Liu M. (2012): Regulation of cytokine expression in murine macrophages stimulated by excretory/secretory products from Trichinella spiralis in vitro. Mol. Cell. Biochem. 360(1 – 2): 79 – 88. DOI: 10.1007/s11010-011-1046-4

  • Beiting D.P. Gagliardo L.F. Hesse M. Bliss S.K. Meskill D. Appleton J.A. (2007): Coordinated control of immunity to muscle stage Trichinella spiralis by IL-10 regulatory T cells and TGF-beta. J. Immunol. 178(2): 1039 – 1047

  • Blum L.K. Mohanan S. Fabre M.V. Yafawi R.E. Appleton J.A. (2013): Intestinal infection with Trichinella spiralis induces distinct regional immune responses. Vet. Parasitol. 194(2 – 4): 101 – 105. DOI: 10.1016/j.vetpar.2013.01.030

  • Bruschi. F. Chiumiento L. (2011): Trichinella inflammatory myopathy: host or parasite strategy? Parasit. Vectors 4: 42. DOI: 10.1186/1756-3305-4-42

  • Bruschi F. Korenaga M. Watanabe N. (2008): Eosinophils and Trichinella infection: toxic for the parasite and the host? Trends Parasitol. 24(10): 462 – 467. DOI: 10.1016/j.pt.2008.07.001

  • Chen X. Yang Y. Yang J. Zhang Z. Zhu X. (2012): RNAi-mediated silencing of paramyosin expression in Trichinella spiralis results in impaired viability of the parasite. PLoS One 7(11): e49913. DOI: 10.1371/journal.pone.0049913

  • Cui J. Ren H.J. Liu R.D. Wang L. Zhang Z.F. Wang Z.Q. (2013):Phage-displayed specific polypeptide antigens induce significant protective immunity against Trichinella spiralis infection in BALB/c mice. Vaccine 31(8): 1171 – 1177. DOI: 10.1016/j.vaccine.2012.12.070

  • Du L. Liu L. Yu Y. Shan H. Li L. (2014): Trichinella spiralis excretory-secretory products protect against polymicrobial sepsis by suppressing MyD88 via mannose receptor. Biomed. Res. Int. 2014: 898646. DOI: 10.1155/2014/898646

  • Gruden-Movsesijan A. Ilic N. Colic M. Majstorovic I. Vasilev S. Radovic I. Sofronic-Milosavljevic L. (2011): The impact of Trichinella spiralis excretory-secretory products on dendritic cells. Comp. Immunol. Microbiol. Infect. Dis. 34(5): 429 – 439. DOI: 10.1016/j.cimid.2011.08.004

  • Gruden-Movsesijan A. Ilic N. Mostarica-Stojkovic M. Stosic-Grujicic S. Milic M. Sofronic-Milosavljevic L. (2010): Mechanisms of modulation of experimental autoimmune encephalomyelitis by chronic Trichinella spiralis infection in Dark Agouti rats. Parasite Immunol. 32(6): 450 – 459. DOI: 10.1111/j.1365-3024.2010.01207.x

  • Ilic N. Gruden-Movsesijan A. Sofronic-Milosavljevic L. (2012): Trichinella spiralis: shaping the immune response. Immunol. Res. 52(1 – 2): 111 – 119. DOI: 10.1007/s12026-012-8287-5

  • Ilic N. Worthington J.J. Gruden-Movsesijan A. Travis M.A. Sofronic-Milosavljevic L. Grencis R.K. (2011): Trichinella spiralis antigens prime mixed Th1/Th2 response but do not induce de novo generation of Foxp3+ T cells in vitro. Parasite Immunol. 33(10): 572 – 582. DOI: 10.1111/j.1365-3024.2011.01322.x

  • Kang S.A. Cho M.K. Park M.K. Kim D.H. Hong Y.C. Lee Y.S. Cha H.J. Ock M.S. Yu H.S. (2012): Alteration of helper T-cell related cytokine production in splenocytes during Trichinella spiralis infection. Vet. Parasitol. 186(3 – 4): 319 – 327. DOI: 10.1016/j.vetpar.2011.12.002

  • Kim S. Park M.K. Yu H.S. (2015): Toll-Like Receptor Gene Expression during Trichinella spiralis Infection. Korean J. Parasitol. 53(4): 431 – 438. DOI: 10.3347/kjp.2015.53.4.431

  • Langelaar M. Aranzamendi C. Franssen F. Van Der Giessen J. Rutten V. van der Ley P. Pinelli E. (2009): Suppression of dendritic cell maturation by Trichinella spiralis excretory/secretory products. Parasite Immunol. 31(10): 641 – 645. DOI: 10.1111/j.1365-3024.2009.01136.x

  • Lawrence C.E. Paterson J.C. Wei X.Q. Liew F.Y. Garside P. Kennedy M.W. (2000): Nitric oxide mediates intestinal pathology but not immune expulsion during Trichinella spiralis infection in mice. J. Immunol. 164(8): 4229 – 4234

  • Li X. Liu W. Wang J. Zou D. Wang X. Yang Z. Yin Z. Cui Q. Shang W. Li H. Wei X. Cui J. Wang Z. Huang L. Yuan J. (2012): Rapid detection of Trichinella spiralis larvae in muscles by loop-mediated isothermal amplification. Int. J. Parasitol. 42(13 – 14): 1119 – 1126. DOI: 10.1016/j.ijpara.2012.09.011

  • Liu A.Y. Dwyer D.F. Jones T.G. Bankova L.G. Shen S. Katz H.R. Austen K.F. Gurish M.F. (2013): Mast cells recruited to mesenteric lymph nodes during helminth infection remain hypogranular and produce IL-4 and IL-6. J. Immunol. 190(4): 1758 – 1766. DOI: 10.4049/jimmunol.1202567

  • Mido S. Fath E.M. Farid A.S. Nonaka N. Oku Y. Horii Y. (2012): Trichinella spiralis: infection changes serum paraoxonase-1 levels lipid profile and oxidative status in rats. Exp. Parasitol. 131(2): 190 – 194. DOI: 10.1016/j.exppara.2012.03.023

  • Moreau E. Chauvin A. (2010): Immunity against helminths: interactions with the host and the intercurrent infections. J. Biomed. Biotechnol. 2010: 428593. DOI: 10.1155/2010/428593

  • Motran C.C. Ambrosio L.F. Volpini X. Celias D.P. Cervi L. (2017): Dendritic cells and parasites: from recognition and activation to immune response instruction. Semin. Immunopathol. 39(2): 199 – 213. DOI: 10.1007/s00281-016-0588-7

  • Noel W. Raes G. Hassanzadeh Ghassabeh G. De Baetselier P. Beschin A. (2004): Alternatively activated macrophages during parasite infections. Trends Parasitol. 20(3): 126 – 133. DOI: 10.1016/j.pt.2004.01.004

  • Pulendran B. Tang H. Manicassamy S. (2010): Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat. Immunol. 11(8): 647 – 655. DOI: 10.1038/ni.1894

  • Puneet P. McGrath M.A. Tay H.K. Al-Riyami L. Rzepecka J. Moochhala S.M. Pervaiz S. Harnett M.M. Harnett W. Melendez A.J. (2011): The helminth product ES-62 protects against septic shock via Toll-like receptor 4-dependent autophagosomal degradation of the adaptor MyD88. Nat. Immunol. 12(4): 344 – 351. DOI: 10.1038/ni.2004

  • Radovic I. Gruden-Movsesijan A. Ilic N. Cvetkovic J. Mojsilovic S. Devic M. Sofronic-Milosavljevic L. (2015): Immunomodulatory effects of Trichinella spiralis-derived excretory-secretory antigens. Immunol. Res. 61(3): 312 – 325. DOI: 10.1007/s12026-015-8626-4

  • Riva E. Steffan P. Guzman M. Fiel C. (2012): Persistence of Trichinella spiralis muscle larvae in natural decaying mice. Parasitol. Res. 111(1): 249 – 255. DOI: 10.1007/s00436-012-2826-9

  • Scalfone L.K. Nel H.J. Gagliardo L.F. Cameron J.L. Al-Shokri S. Leifer C.A. Fallon P.G. Appleton J.A. (2013): Participation of MyD88 and interleukin-33 as innate drivers of Th2 immunity to Trichinella spiralis. Infect. Immun. 81(4): 1354 – 1363. DOI: 10.1128/IAI.01307-12

  • Thrasher S.M. Scalfone L.K. Holowka D. Appleton J.A. (2013): In vitro modelling of rat mucosal mast cell function in Trichinella spiralis infection. Parasite Immunol. 35(1): 21 – 31.10.1111/pim.12014

  • Yadav A.K. Temjenmongla (2012): Efficacy of Lasia spinosa leaf extract in treating mice infected with Trichinella spiralis. Parasitol. Res. 110(1): 493 – 498. DOI: 10.1007/s00436-011-2551-9

  • Yang J. Gu Y. Yang Y. Wei J. Wang S. Cui S. Pan J. Li Q. Zhu X. (2010): Trichinella spiralis: immune response and protective immunity elicited by recombinant paramyosin formulated with different adjuvants. Exp. Parasitol. 124(4): 403 – 408. DOI: 10.1016/j.exppara.2009.12.010

  • Yu Y.R. Deng M.J. Lu W.W. Jia M.Z. Wu W. Qi Y.F. (2013): Systemic cytokine profiles and splenic toll-like receptor expression during Trichinella spiralis infection. Exp. Parasitol. 134(1): 92 – 101. DOI: 10.1016/j.exppara.2013.02.014

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.731
5-year IMPACT FACTOR: 0.634

CiteScore 2018: 0.8

SCImago Journal Rank (SJR) 2018: 0.398
Source Normalized Impact per Paper (SNIP) 2018: 0.554

Target audience: researchers in the field of human, veterinary medicine and natural science
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 437 328 16
PDF Downloads 326 213 7