Small rodents — permanent reservoirs of toxocarosis in different habitats of Slovakia

K. Reiterová 1 , D. Antolová 1 , G. Zaleśny 3 , M. Stanko, S. Špilovská 1 , and L. Mošanský 1
  • 1 Institute of Parasitology of the Slovak Academy of Science, Košice, Hlinkova 3, 040 01, Košice, Slovak Republic
  • 2 Institute of Zoology of the Slovak Academy of Science, Košice, Löfflerova 10, 040 01, Košice, Slovak Republic
  • 3 Department of Invertebrate Systematics and Ecology, Institute of Biology, Wroclaw University of Environmental and Life Sciences, Kozuchowska 5b, Wroclaw, Poland

Abstract

The study aimed to estimate the role of small rodents in the circulation of larval toxocarosis in light of their different habitats. From 2005 to 2008, a total of 1523 small rodents, belonging to 11 species, were captured in 5 different habitats of Slovakia. Anti-Toxocara antibodies were detected in 6.6 % animals. The dominant reservoirs of toxocarosis were striped-field mouse Apodemus agrarius (11.7 %) and mound-building mouse Mus spicilegus (10.7 %), while the seropositivity of voles was low. Sexually active adults were infected more frequently (10.8%) in comparison with inactive ones (5.2 %). According to habitats, seroprevalence of toxocarosis in windbreaks (2.4 %) was significantly lower (p < 0.05) than in agrocoenoses (6.7 %), alluvia (8.5 %) and ecotones (7.5 %). Log-linear analysis performed in A. agrarius indicates that type of habitat and sexual activity affect the seropositivity to Toxocara infection. The highest seroprevalence was observed in alluvium (21.2 %) while the lowest in windbreak (1.8 %) (χ2 = 17.232, p < 0.001) and sexually active mice were characterised by 22.5 % and sexually inactive by 6.4 % seroprevalence (χ2 = 30.634, p < 0.001). The occurrence pattern of toxocarosis in small rodents suggests that they are permanent reservoirs for Toxocara spp. in nature and significant indicators of Toxocara egg contamination in environs.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Abu-Madi, M. A., Behnke, J. M., Lewis, J. W., Gilbert, F. S. (1998): Descriptive epidemiology of Heligmosomoides polygyrus in Apodemus sylvaticus from three contrasting habitats in south-east England. J. Helminthology 72: 93–100 DOI: 10.1017/S0022149X00016254 http://dx.doi.org/10.1017/S0022149X00016254

  • [2] Antolová, D., Reiterová, K., Stanko, M., Zalesny, G., Fričová, J., Dvorožňáková E. (2012): Small mammals: paratenic hosts for species of Toxocara in eastern Slovakia. J. Helminthol., 87: 52–58. DOI: 10.1017/S0022149X11000848 http://dx.doi.org/10.1017/S0022149X11000848

  • [3] Behnke, J. M., Lewis, J. W., Mohd-zain, S. N., Gilbert, F. S. (1999): Helminth infections in Apodemus sylvaticus in southern England: interactive effects of host age, sex and year on the prevalence and abundance of infections. J. Helminthol., 73: 31–44

  • [4] Blaszkowska, J., Kurnatowski, P., Damiecka, P. (2011): Contamination of the soil by eggs of geohelminths in rural areas of Lodz district (Poland). Helminthologia, 48: 67–76. DOI: 10.2478/s11687-011-0012-8 http://dx.doi.org/10.2478/s11687-011-0012-8

  • [5] Čanády, A., Mošanský, L., Stanko, M. (2009): The first knowledge of winter ecology of the mound-building mouse (Mus spicilegus Petényi, 1882) from Slovakia. Acta Zool. Bulgarica, 61: 79–86

  • [6] Cuéllar, C., Fenoy, S., Guillén, J. L. (1995): Crossreactions of sera from Toxascaris leonina and Ascaris suum infected mice with Toxocara canis, Toxascaris leonina and Ascaris suum antigens. Int. J. Parasitol., 25: 731–739 http://dx.doi.org/10.1016/0020-7519(94)00187-S

  • [7] de Savigny, D. H. (1975): In vitro maintenance of Toxocara canis larvae and a simple method for the production of Toxocara ES antigen for use in serological tests for visceral larva migrans. J. Parasitol., 61: 781–782 http://dx.doi.org/10.2307/3279492

  • [8] Despommier, D. (2003): Toxocariasis: clinical aspects, epidemiology, medical ecology, and molecular aspects. Clin. Microbiol. Rev., 16: 265–272 http://dx.doi.org/10.1128/CMR.16.2.265-272.2003

  • [9] Deutz, A., Fusch, K., Auer, H., Kerb, U., Aspöck, H., Köfer, J. (2005): Toxocara-infestation in Austria: a study on the risk of infection of farmers, slaughterhouse staff, hunters and veterinarians. Parasitol. Res., 97. 390–394. DOI: 10.1007/s00436-005-1469-5 http://dx.doi.org/10.1007/s00436-005-1469-5

  • [10] Díez-Morrondo, C., Sánchez-Andrade, R., Ibastea, P., Arias, M. S., Sánchez-Andrade, A., Suárez, J. L., Francisco, I., Romasanta, A., Morrondo, P., Dietbanos, P., Paz-Silva, A. (2010): A case-control study to analyze the influence of the environment in human sensitization against helminth parasitic antigens. Rev. Ibero-Latinoam. Parasitol., 69: 38–44

  • [11] Dubinský, P., Havasiová-Reiterová, K., Peťko, B., Hovorka, I., Tomašovičová, O. (1995): Role of small mammals in the epidemiology of toxocariasis. Parasitology, 110: 187–193 http://dx.doi.org/10.1017/S0031182000063952

  • [12] Glickman, L. T., Magnaval, J. F. (1993): Zoonotic roundworm infections. Inf. Dis. North Am., 7: 717–732.

  • [13] Habluetzel, A., Traldi, G., Ruggieri, S., Attili, A.R., Scuppa, P., Marchetti, R. Menghini, G., Esposito, F. (2003): An estimation of Toxocara canis prevalence in dogs, environmental egg contamination and risk of human infection in the Marche region of Italy. Vet. Parasitol., 113: 243–252 http://dx.doi.org/10.1016/S0304-4017(03)00082-7

  • [14] Havasiová, K., Dubinský, P., Štefančíková, A. (1993): A seroepidemiological study of human Toxocara infection in the Slovak Republic. J. Helminthol., 67: 291–296 http://dx.doi.org/10.1017/S0022149X00013298

  • [15] Havasiová-Reiterová, K., Tomašovičová, O., Dubinský, P. (1995): Effect of various doses of infective Toxocara canis and Toxocara cati eggs of the humoral response and distribution of larvae in mice. Parasitol. Res., 81: 13–17 http://dx.doi.org/10.1007/BF00932411

  • [16] Hildebrand, J., Zalesny, G., Okulewicz, A., Baszkiewicz, K. (2009): Preliminary studies on the zoonotic importance of rodents as a reservoir of toxocariasis from recreation grounds in Wroclaw (Poland). Helminthologia 46, 80–84. DOI: 10.2478/s11687-009-0016-9 http://dx.doi.org/10.2478/s11687-009-0016-9

  • [17] Miterpáková, M., Hurníková, Z., Antolová, D., Dubinský, P. (2009): Endoparasites of red fox (Vulpes vulpes) in the Slovak Republic with the emphasis on zoonotic species Echinococcus multilocularis and Trichinella spp. Helminthologia, 46: 73–79. DOI: 10.2478/s11687-009-0015-x http://dx.doi.org/10.2478/s11687-009-0015-x

  • [18] Okulewicz, A., Perec-matysiak, A., Buńkowska, K., Hildebrand, J. (2012): Toxocara canis, Toxocara cati and Toxascaris leonina in wild and domestic carnivores. Helminthologia, 49: 3–10. DOI: 10.2478/s11687-012-0001-6 http://dx.doi.org/10.2478/s11687-012-0001-6

  • [19] Pavlinová, J., Kinčeková J., Ostró, A., Saksun, L., Vasilková, Z., Königová, A. (2011): Parasitic infections and pregnancy complications. Helminthologia 48: 8–12. DOI: 10.2478/s11687-011-0002-x http://dx.doi.org/10.2478/s11687-011-0002-x

  • [20] Pelikán, J. (1965): Reproduction, population structure and elimination of males in Apodemus agrarius (Pall.). Zoologické listy, 14: 317–332

  • [21] Reiterová, K., Halásová, D., Miterpáková, M., Kinčeková, J., Juriš, P., Stanko, M., Dubinský, P. (2004): Circulation of toxocarosis in countryside and hazard of its transmission. Slovak Vet. Journal, 29: 34–36. (In Slovak)

  • [22] Reiterová, K., Tomašovičová, O., Dubinský, P. (2003): Influence of maternal infection on offspring immune response in murine larval toxocariasis. Parasite Immunol., 25: 361–368. http://dx.doi.org/10.1046/j.1365-3024.2003.00642.x

  • [23] Reiterová, K., Tomašovičová, O., Dubinský, P. (2006): Influence of Toxocara canis infection during pregnancy on offspring resistance towards re-infection. Parasitology, 132: 625–633 http://dx.doi.org/10.1017/S0031182005009741

  • [24] Reperant, L.A., Hegglin, D., Tanner, I., Fischer, C., Deplazes, P. (2009): Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology, 136: 329–337 http://dx.doi.org/10.1017/S0031182008005428

  • [25] Sadjjadi, S.M., Khorsravi, M., Mehrabani, D., Oryan, A. (2000): Seroprevalence of Toxocara infection in school children in Shiraz, Southern Iran. J. Trop. Pediatrics 46: 327–330 http://dx.doi.org/10.1093/tropej/46.6.327

  • [26] Sládek, J., Mošanský, A. (1985): Mammals around us. 1st ed., Martin, Osveta, p. 247. (In Slovak)

  • [27] Stanko, M., Fričová, J., Schniererová, E., Mošanský, L., Mardzinová, S. (2004): Fauna of small mammals (Insectivora, Rodentia, Carnivora) around Rozhanovce (Košice basin). Natura Carpatica, 45: 107–116. (In Slovak)

  • [28] Thyssen, P. J., Moretti, T. C., Ueta, M. T., Ribeiro, O. B. (2004): O papel de insetos (Blattodea, Diptera e Hymenoptera) como possíveis vetores mecânicos de helmintos em ambiente domiciliary e peridomiciliar. Cad. Saúde Pública, 20: 1096–1102 http://dx.doi.org/10.1590/S0102-311X2004000400025

  • [29] Tomašovičová, O., Havasiová-Reiterová, K., Dubinský, P., Hovorka, I. (1993): Intrauterine and lactogenic transfer of Toxocara canis larvae in paratenic hosts. Helminthologia, 30: 111–113

  • [30] Treml, F., Nesňálová, E. (1993): Serological screening of the occurrence of antibodies to leptospires in free-living small mammals. Vet. Med., 38: 559–568

  • [31] Vukičevič-Radič O., Matič R., Kataranovski D., Stamenkovič S. (2006): Spatial organization and home range of Apodemus flavicollis and A. agrarius on Mt. Avala, Serbia. Acta Zool. Hung., 52: 81–96

  • [32] Zejda, J. (1967): Habitat selection in Apodemus agrarius (Pallas, 1778) (Mammalia: Muridae) on the border of the area of its distribution. Zool. listy 16: 15–30. (In Slovak)

OPEN ACCESS

Journal + Issues

Search