Effect of sand-dune slope orientation on soil free-living nematode abundance and diversity

Open access

Abstract

The spatial and temporal dynamics and composition of a soil free-living nematode community were studied in order to determine the impact of slope orientation on the community on the xeric south- and the mesic north-facing sand-dune slopes.

A significant effect of sampling location on organic matter, total number of free-living nematodes, and trophic diversity was found. Although soil moisture had a significant effect on separate nematode trophic groups and on most of the applied ecological indices, no differences in soil moisture were observed between slopes. Organic matter was found to have a significant effect on the fungivore nematodes. The obtained results indicate that the south-facing slope is more favorable for the observed free-living nematodes than the other sampling sites. Twenty-four of the 77 nematode species that were found in the observed area showed dependence on dune slope orientation. The fungibacteria ratio, Simpson’s dominance index, and basal index were useful tools for determining slope differences.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Auslander M. Nevo E. Inbar M. (2003): The effects of slope orientation on plant growth developmental instability and susceptibility to herbivores. J. Arid Environ. 55:405–4 16 http://dx.doi.org/10.1016/S0140-1963(02)00281-1

  • [2] Berkelmans R. Ferris H. Tenuta M. Van Bruggen A. H. C. (2003): Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Appl. Soil Ecol. 23: 223–235. http://dx.doi.org/10.1016/S0929-1393(03)00047-7

  • [3] Bongers T. (1990): The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 83: 14–19 http://dx.doi.org/10.1007/BF00324627

  • [4] Bongers T. (1999): The Maturity Index the evolution of nematode life history traits adaptive radiation and cpscaling. Plant Soil 212: 13–22 http://dx.doi.org/10.1023/A:1004571900425

  • [5] Breckle S. -W. Yair A. Veste M. editors (2008): Arid Dune Ecosystem: The Nizzana Sands in the Negev Desert. Ecological Studies. Vol. 200 Springer-Verlag Berlin Heidelberg Germany

  • [6] Cairns D. M. (1999): Multi-scale analysis of soil nutrients at alpine treeline in Glacier National Park Montana. Phys. Geogr. 20: 256–271

  • [7] Coleman D. C. Odum E. P. Crossley D. A. J. (1992): Soil biology soil ecology and global change. Biol. Fertil. Soils 14: 104–111 http://dx.doi.org/10.1007/BF00336258

  • [8] de Goede R. G. M. Bongers T. (1994): Nematode community structure in relation to soil and vegetation characteristics. Appl. Soil Ecol. 1: 29–44 http://dx.doi.org/10.1016/0929-1393(94)90021-3

  • [9] de Goede R. G. M. Georgieva S. S. Verschoor B. C. Kamerman J. W. (1993): Changes in nematode community structure in a primary succession of blown-out areas in a drift sand landscape. Fundam. Appl. Nematol. 16: 501–513

  • [10] Dick-peddie W. A. (1993): New Mexico Vegetation: Past Present and Future. Albuquerque NM: University of New Mexico Press

  • [11] Evenari M. (1981): Ecology of the Negev Desert: A critical review of our knowledge. In: Shuval H. (Ed) Developments in Arid Zone Ecology and Environmental Quality. Philadelphia PA: Balaban ISS pp. 1–33

  • [12] Ferris H. Bongers T. De Goede R. G. M. (2001): A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl. Soil Ecol. 18: 13–29 http://dx.doi.org/10.1016/S0929-1393(01)00152-4

  • [13] Ferris H. Venette R. C. Scow K. M. (2004): Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation function. Appl. Soil Ecol. 25: 19–35 http://dx.doi.org/10.1016/j.apsoil.2003.07.001

  • [14] Goralczyk K. (1998): Nematodes in a coastal dune succession: Indicators of soil properties? Appl. Soil Ecol. 9:465–469 http://dx.doi.org/10.1016/S0929-1393(98)00106-1

  • [15] Gupta V. V. S. R. Yeates G. W. (1997): Soil microfauna as bioindicators of soil health. In: Pankhurst C. E. Doube B. M. Gupta V. V. S. R. Grace P. R. (Eds) Soil Biota Management in Sustainable Farming Systems. Oxon UK: CAB International pp. 201–233

  • [16] Heip C. Herman P. M. J. Soetaert K. (1988): Data processing evaluation and analysis. In: Higgins R. P. Thiel H. (Eds) Introduction to the Study of Meiofauna. Washington DC: Smithsonian Institution Press pp. 197–231

  • [17] Hohberg K. (2003): Soil nematode fauna of afforested mine sites: genera distribution trophic structure and functional guilds. Appl. Soil. Ecol. 22: 113–126 http://dx.doi.org/10.1016/S0929-1393(02)00135-X

  • [18] Kidron G. J. (2001): Runoff-induced sediment yield over dune slopes in the Negev Desert. 2: Texture carbonate and organic matter. Earth Surf. Proc. Landf. 26: 583–599 http://dx.doi.org/10.1002/esp.194

  • [19] Kidron G. J. Yair A. (1997): Rainfall-runoff relationship over encrusted dune surfaces Nizzana Western Negev Israel. Earth Surf. Proc. Landf. 22: 1169–1184 http://dx.doi.org/10.1002/(SICI)1096-9837(199712)22:12<1169::AID-ESP812>3.0.CO;2-C

  • [20] Kidron G. J. Yair A. (2001): Runoff-induced sediment yield over dune slopes in the Negev Desert. 1: Quantity and variability. Earth Surf. Proc. Landf. 26: 461–474 http://dx.doi.org/10.1002/esp.191

  • [21] Leiros M. C. Trasar-Cepeda C. Seoane S. Gilsotres F. (1999): Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biol. Biochem. 31: 327–335 http://dx.doi.org/10.1016/S0038-0717(98)00129-1

  • [22] Liang W. J. Pinhasi-Adiv Y. Shtultz H. Steinberger Y. (2000): Nematode population dynamics under the canopy of desert halophytes. Arid Soil Res. Rehabil. 14: 183–192 http://dx.doi.org/10.1080/089030600263102

  • [23] Liang W. J. Li Q. Jiang Y. Neher D. A. (2005): Nematode faunal analysis in an aquic brown soil fertilised with slow-release urea Northeast China. Appl. Soil Ecol. 29: 185–192 http://dx.doi.org/10.1016/j.apsoil.2004.10.004

  • [24] Littmann T. (1997): Atmospheric input of dust and nitrogen into the Nizzana sand dune ecosystem north-western Negev Israel. J. Arid Environ. 36: 433–457 http://dx.doi.org/10.1006/jare.1996.0235

  • [25] Monger H. C. Bestelmeyer B. T. (2006): The soilgeomorphic template and biotic change in arid and semiarid ecosystems. J. Arid Environ. 65: 207–218 http://dx.doi.org/10.1016/j.jaridenv.2005.08.012

  • [26] Neher D. A. Darby B. J. (2005): Computation and application of nematode community indices: General guidelines. In: Abebe E. (Eds) Freshwater Nematodes: Ecology and Taxonomy. CABI pp. 211–222

  • [27] Nevo E. (1997): Evolution in action across phylogeny caused by microclimatic stresses at “evolution canyon”. Theor. Popul. Biol. 52: 231–243 http://dx.doi.org/10.1006/tpbi.1997.1330

  • [28] Nevo E. (2001): Evolution of genome-phenome diversity under environmental stress. Proc. Natl. Acad. Sci. U. S. A. 98: 6233–6240 http://dx.doi.org/10.1073/pnas.101109298

  • [29] Odum H. T. (1983): Systems Ecology: An Introduction. New York: Wiley

  • [30] Pen-mouratov S. He X. L. Steinberger Y. (2004): Spatial distribution and trophic diversity of nematode populations under Acacia raddiana along a temperature gradient in the Negev Desert ecosystem. J. Arid Environ. 56: 339–355 http://dx.doi.org/10.1016/S0140-1963(03)00058-2

  • [31] Pen-Mouratov S. Rakhimbaev M. Steinberger Y. (2006): Spatio-temporal effect on soil respiration in finescale patches in a desert ecosystem. Pedosphere 16: 1–9 http://dx.doi.org/10.1016/S1002-0160(06)60019-2

  • [32] Pen-Mouratov S. Berg N. Genzer N. Ukabi S. Shargil D. Steinberger Y. (2009): Do slope orientation and sampling location determine soil biota composition? Front. Biol. China 4: 364–375 http://dx.doi.org/10.1007/s11515-009-0023-8

  • [33] Rowell D. L. (1994): Soil Science: Methods and Applications. London: Longman Group UK Ltd.

  • [34] Saleska S. R. Harte J. Torn M. S. (1999): The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Global Change Biol. 5: 125–141 http://dx.doi.org/10.1046/j.1365-2486.1999.00216.x

  • [35] Sánchez-Moreno S. Camargo J. A. Navas A. (2006): Ecotoxicological assessment of the impact of residual heavy metals on soil nematodes in the Guadiamar River Basin (Southern Spain). Environ. Monit. Assess. 116: 245–262 http://dx.doi.org/10.1007/s10661-006-7398-7

  • [36] Savin M. C. Gorres J. H. Neher D. A. Amador J. A. (2001): Biogeophysical factors influencing soil respiration and mineral nitrogen content in an old field soil. Soil Biol. Biochem. 33: 429–438 http://dx.doi.org/10.1016/S0038-0717(00)00182-6

  • [37] Shannon C. E. Weaver W. (1949): The Mathematical Theory of Communication. Urbana IL: University of Illinois Press

  • [38] Simpson E. H. (1949): Measurement of diversity. Nature 163: 668

  • [39] Sohlenius B. (1980): Abundance biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos 34: 186–194 http://dx.doi.org/10.2307/3544181

  • [40] Steinberger Y. Loboda I. (1991): Nematode population dynamics and trophic structure in a soil profile under the canopy of the desert shrub Zygophyllum dumosum. Pedobiologia 35: 191–197

  • [41] Steinberger Y. Sarig S. (1993): Response by soil nematode populations in the soil microbial biomass to a rain episode in the hot dry Negev Desert. Biol. Fertil. Soils 16: 188–192 http://dx.doi.org/10.1007/BF00361406

  • [42] Ter Braak C. J. F. Smilauer P. (2002): CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Wageningen and Ceske Budejovice: Biometrics

  • [43] Turner M. G. Gardner R. H. O’Neill R. V. (2001): Landscape Ecology in Theory and Practice. New York: Springer

  • [44] Twinn D. C. (1974): Nematodes. In: Dickinson C. H. Pugh G. J. F. (Eds) Biology of Plant Litter Decomposition. London: Academic Press pp. 421–465

  • [45] Uvarov A. V. (2003): Effects of diurnal temperature fluctuations on population responses of forest floor mites. Pedobiologia 47: 331–339 http://dx.doi.org/10.1078/0031-4056-00197

  • [46] Verhoeven R. (2002): The structure of the microtrophic system in a development series of dune soils. Pedobiologia 46: 75–89 http://dx.doi.org/10.1078/0031-4056-00115

  • [47] von Bussau C. (1990): Freeliving nematodes from the coastal dunes and adjoining biotopes of the German and Danish coasts. 1. General part and re-description of some Chromadorida (Nematoda). Zool. Anz. 225: 161–188

  • [48] Wagai R. Brye K. R. Gower S. T. Norman J. M. Bundy L. G. (1998): Land use and environmental factors influencing soil surface CO2 flux and microbial biomass in natural and managed ecosystems in southern Wisconsin. Soil Biol. Biochem. 30: 1501–1509 http://dx.doi.org/10.1016/S0038-0717(98)00041-8

  • [49] Wall J. W. Skene K. R. Neilson R. (2002): Nematode community and trophic structure along a sand dune succession. Biol. Fertil. Soils 35: 293–301 http://dx.doi.org/10.1007/s00374-002-0478-0

  • [50] Wasilewska L. (1994): The effect of age of meadows on succession and diversity in soil nematode communities. Pedobiologia 38: 1–11

  • [51] Whitford W. G. (2002): Ecology of Desert Systems. London: Academic Press

  • [52] Yeates G. W. (1994): Modification and qualification of the nematode maturity index. Pedobiologia 38: 97–101

  • [53] Yeates G. W. King K. L. (1997): Soil nematodes as indicators of the effect of management on grasslands in the New England Tablelands (NSW): Comparison of native and improved grasslands. Pedobiologia 41: 526–536

  • [54] Yeates G. W. Bongers T. De Goede R. G. M. Freckman D. Georgieva S. S. (1993): Feeding habits in soil nematode families and genera — an outline for soil ecologists. J. Nematol. 25: 315–331

  • [55] Zhang X. K. Liang W. J. Jiang D. M. Liu Z. M. Jiang S. W. (2007): Soil nematode community structure in a Chinese sand dune system. Helminthologia 44: 204–209 http://dx.doi.org/10.2478/s11687-007-0032-6

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.731
5-year IMPACT FACTOR: 0.634

CiteScore 2018: 0.8

SCImago Journal Rank (SJR) 2018: 0.398
Source Normalized Impact per Paper (SNIP) 2018: 0.554

Target audience: researchers in the field of human, veterinary medicine and natural science
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 194 94 3
PDF Downloads 74 51 2