Genetic markers to gastrointestinal nematode resistance in sheep: a review

Open access

Abstract

Nematode parasites are the major animal health constraint in sheep production on pasture and cause serious economic losses. Because of failure of anthelmintic drenches, a major research effort has been underway to examine alternatives to chemical control. One of them is selecting sheep which are genetically resistant to parasitic nematodes. However, this last is not widely practiced because of the difficulty of measuring parasite resistance which mostly relies on indirect criteria such as number of nematode eggs passed in the sheep faeces (FEC) packed cell volume (PCV) or enhanced number of eosinophils in peripheral blood. Despite the well known host immune reaction it has been impossible to standardize any immunological parameter and use it as an indicator of parasitic infection. The aim of finding some genetic markers associated with resistance/susceptibility to nematodes is to make diagnostic work easier and conduct an earlier selection of desirable genotypes. However, searching for reliable genetic markers is rather difficult due to different sheep’s manifestation of resistance to either the adult or larval stages of the same parasite species and against the same parasitic stage and various manifestations of the immune responses and antigens against parasites. This review summarizes findings reported in the literature relating to genetic markers to gastrointestinal nematodes resistance in sheep.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Albers G. A. A. Gray G. D. Piper L. R. Barker J. S. F. Le Jambre L. F. Barger I. A. (1987): The genetics of resistance and resilience to Haemonchus contortus infection in young Merino sheep. Int. J. Parasitol. 17: 1355–1363 http://dx.doi.org/10.1016/0020-7519(87)90103-2

  • [2] Amarante A. F. T. Bricarello P. A. Huntley J. F. Mazzolin L. P. Gomes J. C. (2005): Relationship of abomasal histology and parasite-specific immunoglobulin A with the resistance to Haemonchus contortus infection in three breeds of sheep. Vet. Parasitol. 128: 99–107 http://dx.doi.org/10.1016/j.vetpar.2004.11.021

  • [3] Amarante A. F. T. Bricarello P. A. Rocha R. A. Gennari S. M. (2003): Resistance of Santa Ines Suffolk and Ile de France sheep to naturally acquired gastrointestinal nematode infections. Vet. Parasitol. 120: 91–106 http://dx.doi.org/10.1016/j.vetpar.2003.12.004

  • [4] Amarante A. F. T. Craig T. M. Ramsey W. S. Davis S. K. Bazer F. W. (1999): Nematode burdens and cellular responses in the abomasal mucosa and blood of Florida Native Rambouillet and crossbreed lambs. Vet. Parasitol. 80: 311–324 http://dx.doi.org/10.1016/S0304-4017(98)00229-5

  • [5] Amills M. Ramiya V. Norimine J. Lewin H. A. (1998): The major histocompatibility complex of ruminants. Rev. Sci. Tech. 17: 108–120

  • [6] Anderson L. Rask L. (1998): Characterisation of the MHC class II region in cattle: The number of DQ genes varies between genotypes. Immunogenetics 27: 110–120 http://dx.doi.org/10.1007/BF00351084

  • [7] Baker R. L. Watson T. G. Bisset S. A. Vlassoff A. Douch P. G. C. (1991): Breeding sheep in New Zealand for resistance to internal parasites: research results and commercial applications. In: Gray G. D. & Woolaston R. R. (Eds) Breeding for disease resistance in Sheep. Australian Wool Corporation Melbourne 19–32

  • [8] Baker R. L. Mwamachi D. M. Audho J. O. Aduda E. O. Thorpe W. (1999): Genetic resistance to gastrointestinal nematode parasites in Red Maasai Dorper and Red Massai x Dorper ewes in the sub-humid tropics. Anim. Sci. 69: 335–344

  • [9] Barger I. A. Dash K. M. (1987): Repeatability of ovine fecal egg counts and blood packed cell volumes in Haemonchus contortus infections. Int. J. Parasitol. 17: 977–980 http://dx.doi.org/10.1016/0020-7519(87)90018-X

  • [10] Beh K. J. Hulme D. J. Callaghan M. J. Leish Z. Lenane I. Windon R. G. Maddox J. F. (2002): A genome scan for guantitative trait loci affecting resistance to Trichostrongylus colubriformis in sheep. Anim. Genet. 33:97–106 http://dx.doi.org/10.1046/j.1365-2052.2002.00829.x

  • [11] Bekele T. Kasali O. B. Rege J. (1991): Repeatability of measurements of packed cell volume and egg count as indicators of endoparasite load and their relationship with sheep productivity. Acta Trop. 50: 151–160 http://dx.doi.org/10.1016/0001-706X(91)90008-8

  • [12] Benavides M. V. Weimer T. A. Borba M. F. S. Berne M. E. A. Sacco A. M. S. (2002): Association between microsatellite markers of sheep chromosome 5 and faecal egg counts. Small Rumin. Res. 46: 97–105 http://dx.doi.org/10.1016/S0921-4488(02)00198-0

  • [13] Bisset S. A. Vlassoff A. Morris C. A. Southey B. R. Baker R. L. Parker A. G. H. (1992): Heritability and genetic correlations among faecal egg counts and productivity traits in Romney sheep. N. Z. J. Agric. Res. 35: 51–58

  • [14] Blader I. J. Manger I. D. Boothroyd J. C. (2001): Microarray analysis previously unknown changes in Toxoplasma gongii-infected human cells. J. Biol. Chem. 26:24223–24231 http://dx.doi.org/10.1074/jbc.M100951200

  • [15] Boothroyd J. C. Blader I. Cleary M. Singh U. (2003): DNA microarrays in parasitology: strengths and limitations. Trends Parasitol. 19: 470–476 http://dx.doi.org/10.1016/j.pt.2003.08.002

  • [16] Bouix J. Krupiński J. Rzepecki R. Nowosad B. Skrzyzala I. Roborzynski M. Fudalewicz-Niemczyk W. Skalska M. Malczewski A. Gruner L. (1998): Genetic resistance to gastrointestinal nematode parasites In Polish long-wool sheep. Int. J. Parasitol. 28:1797–1804 http://dx.doi.org/10.1016/S0020-7519(98)00147-7

  • [17] Buitkamp J. Filmether P. Stear M. J. Epplen J. T. (1996): Class I and class II Major histocompatibility complex alleles are associated with faecal egg counts following natural predominantly Ostertargia circumcincta infection. Parasitol. Res. 82: 693–696 http://dx.doi.org/10.1007/s004360050187

  • [18] Charon K. M. Moskwa B. Gruszczyńska J. Kurył J. Pierzchała M. Rutkowski R. (2001): Realationship between polymorphism in locus OMHC1 (MHC class I) and resistance to nematodes in Polish Heatherhead Sheep. Anim. Sci. Pap. Rep. 19: 285–292

  • [19] Charon K. M. Moskwa B. Nowak Z. Szydłowski M. (2000): Genetic parameters for faecal egg count following natural nematode infections and correlation with productive traits in Polish Heath Sheep. J. Anim. Feed Sci. 9: 461–470

  • [20] Charon K. M. Moskwa B. Rutkowski R. Gruszczyńska J. Świderek W. (2002): Microsatellite polymorphism in DRB1 gene (MHC class II) and its relation to nematode faecal egg count in Polish Heath Sheep. J. Anim. Feed Sci. 11: 47–58

  • [21] Coltman D. W. Wilson K. Pilkington J. G. Stear M. J. Pemberton J. M. (2001): A microsatellite polymorphism in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally-parasitized population of Soay sheep. Parasitology 122:571–582 http://dx.doi.org/10.1017/S0031182001007570

  • [22] Cooper D. W. Van Oorschot R. A. H. Piper L. R. Le Jambre L. F. (1989): No association between the ovine leukocyte antigen (OLA) system in the Australian Merino and susceptibility to Haemonchus contortus infestation. Int. J. Parasitol. 15: 101–109

  • [23] Crawford A. M. McEwan J. C. Dodds K. G. Wright C. S. Bisset S. A. Macdonald P. A. Knowler K. J. Greer G. J. Green R. S. Shaw R. J. Paterson K. A. Cuthbertson R. P. Vlassoff A. Squire D. R. West C. J. Phua S. H. (1997): Proceedings of the 12th Conference on Resistance to Nematode Parasites in Sheep. Part 1. Dubbo NSW Australia 58–62

  • [24] Crawford A. M. Paterson K. A. Dodds K. G. Dieztascon C. Williamson P. A. Roberts Thomson M. Bisset S. A. Beattie A. E. Greer G. J. Green R. S. Wheeler R. Shaw R. J. Knowler K. McEwan J. C. (2006): Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees. BMC Genomics 7: 178 http://dx.doi.org/10.1186/1471-2164-7-178

  • [25] Davis G. Stear M. J. Benothman M. Abuagob O. Kerr A. Mitchell S. Bishop S. C. (2006): Quantitative trait loci associated with parasitic infection in Scottish Blackface sheep. Heredity 96: 252–258 http://dx.doi.org/10.1038/sj.hdy.6800788

  • [26] Diez-Tascon Ch. Keane O. M. Wilson T. Zadissa A. Hyndman D. L. Baird D. B. McEwan J. Crawford A. M. (2005): Microarray analysis of selection lines from outbred populations to identify genes involved with nematode parasite resistance in sheep. Physiol. Gen. 21: 59–69 http://dx.doi.org/10.1152/physiolgenomics.00257.2004

  • [27] Doligalska M. Moskwa B. Niznikowski R. (1997): The repeatability of faecal egg counts in Polish Wrzosówka sheep. Vet. Parasitol. 70: 241–246 http://dx.doi.org/10.1016/S0304-4017(96)01151-X

  • [28] Doligalska M. Moskwa B. Stear M. J. (1999): Relationship among peripheral eosinophil peroxidase activity interleukin-5 concentration and faecal nematode egg count during natural mixed gastrointestinal nematode infection. Vet. Immunol. Immunopathol. 70: 299–308 http://dx.doi.org/10.1016/S0165-2427(99)00078-1

  • [29] Dominik S. (2005): Qantitive trait loci for internal nematode resistance in sheep: a review. Genet. Sel. Evol. 37: 83–96 http://dx.doi.org/10.1051/gse:2004027

  • [30] Douch P. G. C. Green R. S. Morris C. A. McEewan L. C. Windon R. G. (1996): Phenotypic markers for selection of nematode-resistance sheep. Int. J. Parasitol. 26 899–911 http://dx.doi.org/10.1016/S0020-7519(96)80062-2

  • [31] Dukkipati V. S. R. Blair H. T. Garrick D. J. Murray A. (2006): Ovar-MHC — ovine major histocopatibility complex: structure and gene polymorfisms. Genet. Mol. Res. 5: 581–608

  • [32] Eady S. J. Woolaston R. R. Mortimer S. I. Lewer R. P. Raadsma H. W. Swan A. A. Ponzoni R. W. (1996): Resistance to nematode parasites in Merino sheep: sources of genetic variation. Aust. J. Agric. Res. 47: 895–915 http://dx.doi.org/10.1071/AR9960895

  • [33] Else K. J. Finkelman F. D. (1998): Intestinal nematode parasites cytokines and effector mechanisms. Int. J. Parasitol. 28: 1145–1158 http://dx.doi.org/10.1016/S0020-7519(98)00087-3

  • [34] Escayg A. P. Hickford J. G. H. Motgomery G. W. Dodds K. G. Bullock D. W. (1996): Polymorphism at the ovine major histocompatibility complex class II loci. Anim. Genet. 27: 305–312 http://dx.doi.org/10.1111/j.1365-2052.1996.tb00974.x

  • [35] Fabb S. A. Maddox J. F. Gogolin-Ewens K. J. Baker L. Wu M. J. Brandod M. R. (1993): Isolation characterization and evolution of ovine major histocomatibility complex class II DRA and DQA genes. Anim. Genet. 24: 249–255

  • [36] Gamble H. R. Zajac A. M. (1992): Resistance of St. Croix lambs to Haemonchus contortus in experimentally and naturally acquired infections. Vet. Parasitol. 41: 211–225 http://dx.doi.org/10.1016/0304-4017(92)90081-J

  • [37] Gause W. C. Urban Jr. Stadecker M. J. (2003): The immune response to parasitic helminthes: insights from murine models. Trends Immunol. 24: 269–277 http://dx.doi.org/10.1016/S1471-4906(03)00101-7

  • [38] Gruszczyńska J. Brokowska K. Charon K. M. Świderek W. P. (2005): Restriction fragment length polymorphism of exon 2 Ovar-DRB1 gene in Polish Heath Sheep and Polish Lowland Sheep. J. Appl. Genet. 46: 311–314

  • [39] Gruszczyńska J. Charon K. M. Świderek W. Sawera M. (2002): Microsatellite polymorphism in locus OMHC1 (MHC Class I) in Polish Heath Sheep and Polish Lowland Sheep (Żelazna variety). J. Appl. Genet. 43: 217–222

  • [40] Hediger R. Ansari H. A. Stranzinger G. F. (1991): Chromosome banding and gene localizations support extensive conservation of chromosome structure between cattle and sheep. Cytogenet. Cell Genet. 57: 127–134 http://dx.doi.org/10.1159/000133131

  • [41] Henderson N. G. Stear M. J. (2006): Eosinophil and IgA responses in sheep infected with Teladorsagia circumcincta. Vet. Immunol. Immunopathol. 112: 62–66 http://dx.doi.org/10.1016/j.vetimm.2006.03.012

  • [42] Kaufman J. Salomonsen J. Flajnik M. (1994): Evolutionary conservation of MHC class I and class II molecules — different yet the same. Semin. Immunol. 6: 411–424 http://dx.doi.org/10.1006/smim.1994.1050

  • [43] Keane O. M. Dodds K. G. Crawford A. M. McEwan J. C. (2007): Transcripstional profiling of Ovis aries identifies Ovar-DQA1 allele frequency differences between nematode resistant and susceptible selection lines. Press. Physiol. Genomics. 30: 253–261 http://dx.doi.org/10.1152/physiolgenomics.00273.2006

  • [44] Maizels R. M. Bundy D. A. P. Selkirk M. E. Smith D. F. Anderson R. M. (1993). Immunological modulation and evasion by helminth parasites in human populations. Nature 365: 797–805 http://dx.doi.org/10.1038/365797a0

  • [45] McEwan J. C. Mason P. Baker R. L. Clarke J. N. Hickey S. M. Turner K. (1992): Effect of selection for productive traits on internal parasite resistance in sheep. Proc. N. Z. Soc. Anim. Prod. 52: 53–56

  • [46] Meeusen E. N. T. Balic A. Bowles V. (2005): Cells cytokines and other molecules associated with rejection of gastrointestinal nematode parasites. Vet. Immunol. Immunopathol. 108: 121–125 http://dx.doi.org/10.1016/j.vetimm.2005.07.002

  • [47] Morris C. A. Vlassoff A. Bissett S. A. Baker R. L. West C. J. Hurford A. P. (1997): Responses of Romney sheep to selection for resistance or susceptibility of nematode infection. Anim. Sci. 64: 319–329

  • [48] Moskwa B. (1999a): The imune response against gastrointestinal nematodes in naturally infected Polish Wrzosówka sheep. I. The serum IgG response to Haemonchus contortus in ewes over three grazing seasons. Acta Parasitol. 44: 266–273

  • [49] Moskwa B. (1999b): The immune response against gastrointestinal nematodes in naturally infected Polish Wrzosówka sheep. II. The serum IgG response to nematode somatic antigens in young ewes over three grazing seasons. Acta Parasitol. 44: 274–280

  • [50] Moskwa B. Doligalska M. Cabaj W. (1998): The repeatability of haematological and parasitological parameters in Polish Wrzosówka hoggets naturally infected with Trichostrongylid nematodes. Acta Parasitol. 43: 148–153

  • [51] Mugambi J. Audho J. Baker R. (2005): Evaluation of the phenotypic performance of a Red Maasai and Dorper double backcross resource population: natural pasture challenge with gastro-intestinal nematode parasites. Vet. Parasitol. 127: 263–275 http://dx.doi.org/10.1016/j.vetpar.2004.10.017

  • [52] Nowosad B. Skalska M. Molenda K. Węglarzy K. Kornaś S. (2005). A comparative study of gastrointestinal nematode infections in different breeds of sheep. Part I — Ewes (only in Polish). Roczniki Naukowe Zootechniki Supplement 22: 295–298

  • [53] Nowosad B. Skalska M. Molenda K. Węglarzy K. Kornaś S. (2005b). A comparative study of gastrointestinal nematode infections in different breeds of sheep. Part II — Lambs (only in Polish). Roczniki Naukowe Zootechniki Supplement 22: 295–298

  • [54] Pernthaner A. Shaw R. J. McNeill M. M. Morrison L. Hein W. R. (2005): Total and nematode-specific IgE responses in intestinal lymph of genetically resistant and susceptible sheep during infection with Trichostrongylus colubriformis. Vet. Immunol. Immunopathol. 104: 69–80 http://dx.doi.org/10.1016/j.vetimm.2004.10.008

  • [55] Schwaiger F. W. Gostomski D. Stear M. J. Duncan J. L. Mckellar Q. A. Epplen J. T. Buitkamp J. (1995): An ovine major histocompatibility complex DRB1 allele is associated with low faecal egg counts following natural predominantly Ostertargia circumcincta infection. Int. J. Parasitol. 25: 815–822 http://dx.doi.org/10.1016/0020-7519(94)00216-B

  • [56] Stear M. J. Bairden K. Bishop S. C. Buitkamp J. Epplen J. T. Gostomski D. McKellar Q. A. Schwaiger F. W. Wallace D. S. (1996): An ovine lymphocyte antigen is associated with reduced faecal egg counts in four-month-old lambs following natural predominantly Ostertargia circumcincta infection. Int. J. Parasitol. 26: 423–428 http://dx.doi.org/10.1016/0020-7519(96)00002-1

  • [57] Stear M. J. Henderson N. G. Kerr A. Mckellar Q. A. Mitchell S. Seeley C. Bishop S. C. (2002): Eosinophilia as marker of resistance to Teladorsagia circumcincta in Scottish Blackface lambs. Parasitology 124: 553–560 http://dx.doi.org/10.1017/S0031182002001580

  • [58] Stear M. J. Innocent G. T. Buitkamp J. (2005): The evolution and maintenance of polymorphism in the major histocompatibility complex. Vet. Immunopathol. 108: 53–57 http://dx.doi.org/10.1016/j.vetimm.2005.07.005

  • [59] Stear M. J. Strain S. Bishop S. C. (1999): Mechanisms underlying resistance to nematode infection. Int. J. Parasitol. 29: 51–56 http://dx.doi.org/10.1016/S0020-7519(98)00179-9

  • [60] Strain S. A. J. Stear M. J. (2001): The influence of protein supplementation on the immune response to Haemonchus contortus. Parasitol. Immunol. 23: 527–531 http://dx.doi.org/10.1046/j.1365-3024.2001.00410.x

  • [61] Vanimisetti H. B. Andrew S. L. Zajac A. M. Notter D. R. (2004). Inheritance of fecal egg count and packed cell volume and their relationship with production traits in sheep infected with Haemonchus. J. Anim. Sci. 82: 1602–1611

  • [62] Watson T. G. Baker R. L. Harvey T. G. (1986): Genetic variation in resistance or tolerance to internal nematode parasites in strains of sheep at Rotomahana. Proc. N. Z. Soc. Anim. Prod. 46: 23–26

  • [63] Wetherall J. D. Groth D. M. Karlsson L. J. E. (1991): DNA markers and parasite resistance in sheep: complement and major histocompatibility complex associations. Wool Res. Dev. Corp. 109–114

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.731
5-year IMPACT FACTOR: 0.634

CiteScore 2018: 0.8

SCImago Journal Rank (SJR) 2018: 0.398
Source Normalized Impact per Paper (SNIP) 2018: 0.554

Target audience: researchers in the field of human, veterinary medicine and natural science
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 169 93 4
PDF Downloads 101 64 2