Iron age burial mounds as refugia for steppe specialist plants and invertebrates – case study from the Zsolca mounds (NE Hungary)

Open access

Abstract

Prehistoric mounds of the Great Hungarian Plain often function as refuges for relic loess steppe vegetation and their associated fauna. The Zsolca mounds are a typical example of kurgans acting as refuges, and even though they are surrounded by agricultural land, they harbour a species rich loess grassland with an area of 0.8 ha. With a detailed field survey of their geomorphology, soil, flora and fauna, we describe the most relevant attributes of the mounds regarding their maintenance as valuable grassland habitats. We recorded 104 vascular plant species, including seven species that are protected in Hungary and two species (Echium russicum and Pulsatilla grandis) listed in the IUCN Red List and the Habitats Directive. The negative effect of the surrounding cropland was detectable in a three-metre wide zone next to the mound edge, where the naturalness of the vegetation was lower, and the frequency of weeds, ruderal species and crop plants was higher than in the central zone. The ancient man-made mounds harboured dry and warm habitats on the southern slope, while the northern slopes had higher biodiversity, due to the balanced water supplies. Both microhabitats had different assemblages of ground-dwelling invertebrates.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Barczi A. Joó K. Pető Á. & Bucsi T. 2006: Survey of the Buried Paleosol under the Lyukas Mound in Hungary. Eurasian Soil Science 39 (1): 133–140.

  • Bede Á. Salisbury R. B. Csathó A. I. Czukor P. Páll D. G. Szilágyi G. & Sümegi P. 2015: Report of the complex geoarcheological survey at the Ecse-halom kurgan in Hortobágy Hungary. Central European Geology 58(3): 268–289. doi: https://doi.org/10.1556/24.58.2015.3.5

  • Biró M. Bölöni J. & Molnár Zs. 2018: Use of long-term data to evaluate loss and endangerment status of Natura 2000 habitats and effects of protected areas. Conservation Biology 3: 660–671. doi: https://doi.org/10.1111/cobi.13038

  • Borhidi A. 1993: A magyar flóra szociális magatartástípusai természetességi és relatív ökológiai értékszámai [Social behavior-types naturalness and relative ecological values of the Hungarian flora]. JPTE Növénytani Tanszék Pécs p. 93. (in Hungarian)

  • Csathó A. I. 2011: Az elsődleges és másodlagos mezsgyék növényzetének összehasonlító vizsgálata a battonyai Gránic- és Csárda-dűlő példáján [Differences between the vegetation of primary and secondary verges – examples of the Gránic- and Csárda-dűlő Battonya]. Tájökológiai Lapok 9 (2): 345–356. (in Hungarian)

  • Deák B. Török P. Tóthmérész B. & Valkó O. 2015: A hencidai Mondró-halom a löszgyep-vegetáció őrzője [The Mondró-mound of Hencida guardian of the loess-grassland vegetation]. Kitaibelia 20 (1): 143–149. (in Hungarian)

  • Deák B Tóthmérész B. Valkó O. Sudnik-Wójcikowska B. Moysiyenko I.I. Bragina T.M. Apostolova I. Dembicz I. Bykov N.I. & Török P. 2016a: Cultural monuments and nature conservation: a review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodiversity and Conservation 25: (293) 1–18. doi: https://doi.org/10.1007/s10531-016-1081-2

  • Deák B. Valkó O. Török P. & Tóthmérész B. 2016b: Factors threatening grassland specialist plants – A multi-proxy study on the vegetation of isolated grasslands. Biological Conservation 204: 255–262. doi: https://doi.org/10.1016/j.biocon.2016.10.023

  • Deák B. Tölgyesi Cs. Kelemen A. Bátori Z. Gallé R. Bragina T.M. Abil Y.A. & Valkó O. 2017: The effects of micro-habitats and grazing intensity on the vegetation of burial mounds in the Kazakh steppes. Plant Ecology and Diversity 10: 509–520. doi: https://doi.org/10.1080/17550874.2018.1430871

  • Deák B. Valkó O. Török P. Kelemen A. Bede Á. Csathó A.I. & Tóthmérész B. 2018: Landscape and habitat and filters jointly drive richness and abundance of grassland specialist plants in terrestrial habitat islands. Landscape Ecology 33: 1117–1132. doi: https://doi.org/10.1007/s10980-018-0660-x

  • Deák B. Tóthcs Cs. A. Bede Á. Apostolova I. Bragina T. M. Báthori F. Bán M. 2019: Eurasian Kurgan Database – a citizen science tool for conserving grasslands on historical sites. Hacquetia 18 (2): doi: 10.2478/hacq-2019-0007

  • Dembicz I. Moysiyenko I. I. Shaposhnikova A. Vynokurov D. Kozub L. & Sudnik-Wójcikowska B. 2016: Isolation and patch size drive specialist plant species density within steppe islands: A case study of kurgans in southern Ukraine. Biodiversity and Conservation 25(12): 2289–2307. doi: https://doi.org/10.1007/s10531-016-1077-y

  • Diamond J.M. & May R.M. 1976: Island biogeography and the design of nature reserves. In May R.M (ed.): Theoretical Ecology Principles and Application. Blackwell Scientific Publications Oxford. 163-186.

  • Ellenberg H. Weber E. H. Düll R. Wirth V. Werner W. & Paulißen D. 1992: Zeigerwerte von Pflanzen in Mitteleuropa (Indicator values of plants in Central Europe) Scripta Geobotanica 18. Verlag Erich Goltze KG Göttingen 258. (in German)

  • Gallé L. Győrffy Gy. Hornung E. Kocsis A. Körmöczi L. Szőnyi G. & Vajda Z. 1992: Arthropod communities of ecological islands surrounded by agricultural fields. In Zombori L. Peregovits L. (eds.) Proc. 4th European Congress of Entomology and XIII Internationale Symposium für die Entomofaunistik Mitteleuropas 1–6 September 1991 Gödöllő Hungary pp. 286–290.

  • Godó L. Tóthmérész B. Valkó O. Tóth K. Radócz S. Kiss R. Kelemen A. Török P. Švamberková E. & Deák B. 2018: Ecosystem engineering by foxes is mediated by isolation in grassland fragments. Ecology and Evolution 8(14): 7044–7054. doi: https://doi.org/10.1002/ece3.4224

  • Jones M. 2007: The European Landscape Convention and the question of public participation. Landscape Research 32: 613–633. doi: https://doi.org/10.1080/01426390701552753

  • Joó K. 2003: Kunhalomkutatások (A Csípő-halom vegetációja). [Researches on kurgans (The vegetation of Csípő-mound)]. Tájökológiai Lapok 1(1): 87–96. (in Hungarian)

  • Kitov G. 1993: The Thracian tumuli. Thracia 10: 39–80.

  • Krausz K. & Pápai J. 2004: Egyenesszárnyú rovarok izolátumdinamikai vizsgálata kunhalmokon (Studies on the Orthoptera isolation-dynamics on kurgans). In Tóth A. (ed.): A kunhalmokról más szemmel. Kisújszállás-Debrecen pp. 89–107. (in Hungarian)

  • Lisetskii F. Goleusov V.P. Moysiyenko I.I. & Sudnik-Wójcikowska B. 2014: Microzonal distribution of soils and plants along the catenas of mound structures. Contemporary Problems in Ecology 7: 282–293. doi: https://doi.org/10.1134/S1995425514030111

  • Lisetskii F. Sudnik-Wójcikowska B. & Moysiyenko I. 2016: Flora differentiation among local ecotopes in the transzonal study of forest-steppe and steppe mounds. Biology Bulletin 43(2): 169–176. doi: https://doi.org/10.1134/S1062359016010106

  • Molnár M. Joó K. Barczi A. Szántó Zs. Futó I. Palcsu L. & Rinyu L. 2004: Dating of total soil organic matter used in kurgan studies. Radiocarbon 46 (2): 413–419.

  • Molnár M. & Svingor É. 2011: An interpretation of the soil 14C results of the Hajdúnánás-Tedej-Lyukas-halom kurgan. Kurgan Studies: An environmental and archaeological multiproxy study of burial mounds in the Eurasian steppe zone. BAR International Series 2238(11): 255–258.

  • Molnár V. A. Löki V. Máté A. Molnár A. Takács A. Nagy T. Lovas-Kiss Á. Lukács B.A. Sramkó G. & Tökölyi J. 2017: The occurrence of Spiraea crenata and other rare steppe plants in Pannonian graveyards. Biologia 72: 500–509. https://doi.org/10.1515/biolog-2017-0060

  • Molnár V. A. Mészáros A. Csathó A.I. Balogh G. Takács A. Löki V. Lovas-Kiss Á. Tökölyi J. Somlyay L. & Bauer N. 2018: Distribution and seed production of the rare dry grassland specialist Sternbergia colchiciflora (Amaryllidaceae) in Pannonian cemeteries. Tuexenia 38: 371–384. doi: https://doi.org/10.14471/2018.38.015

  • Mozolevsky B.N. & Polin C.V. 2005: Kurgany skifskogo Gerossa IVB (Babina vodjana i cobolena mogili) [Kurgans of Scythian Gerros of 4th B.C. (Babina Vodjana and Soboleva mogily)]. Stilos Publishing Kiev.

  • Ponomareva V. V. & Plotnikova T. A. 1980: Gumus i Pochvoobrazovanie (Humus and Pedogenesis) Nauka Leningrad. 65–74.

  • Selmeczi L. 1971: Angaben und Gesichtspunkte zur archäologischen Forschung nach den Kumanen im Komitat Szolnok. Móra Ferenc Múzeum Évkönyve 2. pp. 187–197.

  • Simon T. 1992: A magyarországi edényes flóra határozója [Guide of the vascular flora in Hungary]. Tankönyvkiadó Budapest. 892 pp. (in Hungarian)

  • Sudnik-Wójcikowksa B. Moysiyenko I.I. & Zachwatowicz M. 2011: The value and need for protection of kurgan flora in the anthropogenic landscape of steppe zone in Ukraine. Plant Biosystems 145: 638–653. doi: https://doi.org/10.1080/11263504.2011.601335

  • Szilágyi G. Náfrádi K. & Sümegi P. 2019: A preliminary chronological study to understand the construction phases of a Late Copper–Early Bronze Age kurgan (kunhalom). Central European Geology 62: 1–29. https://doi.org/10.1556/24.61.2018.11

  • Tóth Cs. 2006: Results of the national mound cadastering from the aspect of geological conservation. Acta Debrecina Geology Geomorphology Physical Geography Series Debrecen 1: 129–135.

  • Tóth Cs. & Tóth A. 2011: The complex condition assessment survey of kurgans in Hungary. In Á. Pethő & A. Barczi (eds.) Kurgan Studies: An environmental and archaeological multiproxy study of burial mounds in the Eurasian steppe zone. BAR International Series 2238. 11: 9–17.

  • Tóth Cs. Pethe M. & Hatházi Á. 2014: The application of earth science-based analyses on a twin-kurgan in Northern Hungary. Carpathian Journal of Earth and Environmental Sciences 9 (1): 11–20.

  • Valkó O. Tóth K. Kelemen A. Miglécz T. Radócz S. Sonkoly J. Tóthmérész B. Török P. & Deák B. 2018: Cultural heritage and biodiversity conservation – Plant introduction and practical restoration on ancient burial mounds. Nature Conservation 24: 65–80. doi: https://doi.org/10.3897/natureconservation.24.20019

  • Zólyomi B. & Fekete G. 1994: The Pannonian loess steppe: differentiation in space and time. Abstracta Botanica 18 (1): 29–41.

Search
Journal information
Impact Factor


CiteScore 2018: 1.28

SCImago Journal Rank (SJR) 2018: 0.344
Source Normalized Impact per Paper (SNIP) 2018: 0.971

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 93 93 25
PDF Downloads 62 62 12