Hier bin Ich: Wo bist Du?

Summary

Since its first description, the imprinting phenomenon has been deeply investigated, and researchers can nowadays provide profound knowledge of its functioning. Here, I present how this peculiar form of early exposure learning can be used as a strategy to study animal cognition. Starting from imprinting as a social trigger for the domestic chick (Gallus gallus) and combining it with the unique possibility of accurate control of sensory experiences in this animal model, I present evidence that in artificial environments, imprinting serves as a rigorous test of the core domains of cognition. Whether basic cognitive concepts are already present at birth or whether they need extensive experience to develop are questions that can be addressed in precocial birds and still, following the tradition of the seminal works made by Lorenz, can inform on human cognitive processing.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aguiar, A., & Baillargeon, R. (1999). 2.5-month-old infants’ reasoning about when objects should and should not be occluded. Cognitive Psychology, 39, 116–157.

  • Baillargeon, R. (2004). Infants’ physical world. Current Directions in Psychological Science, 13(3), 89–94.

  • Baiocchi, V., & Chiandetti, C. (2016). Chicks run harder toward a consonant over a dissonant clucking hen: Biological roots for the appreciation of consonant sounds. In Trieste Symposium on Perception and Cognition, Trieste, Italy, November 4, P03.

  • Bateson, P. P. G. (1964a). Effect of similarity between rearing and testing conditions on chicks’ following and avoidance responses. Journal of Comparative and Physiological Psychology, 57(1), 100–103.

  • Bateson, P. P. G. (1964b). Changes in chicks’ responses to novel moving objects over the sensitive period for imprinting. Animal Behaviour, 7(4), 479–489.

  • Bateson, P. P. G. (1990). Is imprinting such a special case? Philosophical Transactions of the Royal Society of London B, 329, 125–131.

  • Bateson, P. P. G., Horn, G., & Rose, S. P. R. (1973). Imprinting: Lasting effects on Uracil incorporation into chick brain. Science, 181, 576–578.

  • Bird, C. D., & Emery, N. J. (2010). Rooks perceive support relations similar to six-month-old babies. Proceedings of the Royal Society of London B: Biological Sciences, 277, 147–151.

  • Bolhuis, J. J. (1991). Mechanisms of avian imprinting: A review. Biological Reviews, 66(4), 303–345.

  • Bolhuis, J. J., de Vos, G. J., & Kruijt, J. P. (1990). Filial imprinting and associative learning. The Quarterly Journal of Experimental Psychology, 42(3), 313–329.

  • Bowling, D. L., & Purves, D. (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences of the United States of America, 112(36), 11155–11160.

  • Bozzi, P. (1990). Fisica ingenua. Oscillazioni, piani inclinati e altre storie: studi di psicologia della percezione. Milano, Italy: Garzanti.

  • Cacchione, T., & Krist, H. (2004). Recognizing impossible object relations: Intuitions about support in chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 118, 140–148.

  • Call, J. (2007). Apes know that hidden objects can affect the orientation of other objects. Cognition, 105, 1–25.

  • Caramazza, A., McCloskey, M., & Green, B. (1981). Naïve beliefs in “sophisticated” subjects: Misconceptions about trajectories of objects. Cognition, 9, 117–123.

  • Carey, S. (2009). The origin of concepts. Oxford, England: Oxford University Press.

  • Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23(2), 149–178.

  • Cheng, K., & Newcombe, N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin and Review, 12(1), 1–23.

  • Chiandetti, C. (2016). A commentary on “Cats prefer species-appropriate music. Snowdon, C. T., Teie, D., Savage, M. (2015). Applied Animal Behaviour Science, 166, 106-111”. Frontiers in Psychology, 7, 594.

  • Chiandetti, C., & Turatto, M. (2017). Context-specific habituation of the freezing response in newborn chicks. Behavioral Neuroscience, 131(5), 437–446.

  • Chiandetti, C., & Vallortigara, G. (2008). Is there an innate geometric module? Effects of experience with angular geometric cues on spatial re-orientation based on the shape of the environment. Animal Cognition, 11(1), 139–146.

  • Chiandetti, C., & Vallortigara, G. (2010). Experience and geometry: Controlled-rearing studies with chicks. Animal Cognition, 13(3), 463–470.

  • Chiandetti, C., & Vallortigara, G. (2011a). Chicks like consonant music. Psychological Science, 22, 1270–1273.

  • Chiandetti, C., & Vallortigara, G. (2011b). Intuitive physical reasoning about occluded objects by inexperienced chicks. Proceedings of the Royal Society of London B: Biological Sciences, 278(1718), 2621–2627.

  • Chiandetti, C., Spelke, E. S., & Vallortigara, G. (2015). Inexperienced newborn chicks use geometry to spontaneously reorient to an artificial social partner. Developmental Science, 18(6), 972–978.

  • Chiandetti, C., Dissegna, A., & Turatto, M. (2018). Rapid plasticity attenuation soon after birth revealed by habituation in newborn chicks. Developmental Psychobiology,. [in press].

  • Collias, N., & Joos, M. (1952). The spectrographic analysis of sound signals of the domestic fowl. Behaviour, 5, 175–188.

  • Daisley, J. N., Vallortigara, G., & Regolin, L. (2010). Logic in an asymmetrical (social) brain: Transitive inference in the young domestic chick. Social Neuroscience, 5, 309–319.

  • DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science, 208, 1174–1176.

  • Di Giorgio, E., Frasnelli, E., Rosa Salva, O., Scattoni, M. L., Puopolo, M., Tosoni, D., … Vallortigara, G. (2016). Difference in visual social predispositions between newborns at low- and high-risk for autism. Scientific Reports, 6, 26395.

  • Gori, S., Molteni, M., & Facoetti, A. (2016). Visual illusions: An interesting tool to investigate developmental dyslexia and autism spectrum disorder. Frontiers in Human Neuroscience, 10, 175.

  • Gottlieb, G. (1979). Development of species identification in ducklings: V. Perceptual differentiation in the embryo. Journal of Comparative and Physiological Psychology, 93, 831–854.

  • Heaton, M. B. (1972). Prenatal auditory discrimination in the wood duck (Aix sponsa). Animal Behavior, 20, 421–424.

  • Hetch, H., & Proffitt, D. R. (1995). The price of expertise: Effects of experience on the water level task. Psychological Science, 6, 90–95.

  • Horn, G. (2004). Pathways of the past: The imprint of memory. Nature Reviews Neuroscience, 5, 108–120.

  • Horn, G., Bradley, P., & McCabe, B. J. (1985). Changes in the structure of synapses associated with learning. Journal of Neuroscience, 5, 3161–3168.

  • Johnson, M. H. (1992). Imprinting and the development of face recognition: From chick to man. Current Directions in Psychological Science, 1, 52–55.

  • Johnson, M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience, 6, 766–774.

  • Johnson, M. H., & Horn, G. (1988). The development of filial preferences in the dark-reared chick. Animal Behaviour, 36, 675–683.

  • Johnson, M. H., Bolhuis, J. J., & Horn, G. (1992). Predispositions and learning: Behavioural dissociations in the chick. Animal Behavior, 44(5), 943–948.

  • Kent, J. P. (1993). The chick’s preference for certain features of the maternal cluck vocalization in the domestic fowl (Gallus gallus). Behaviour, 125, 177–187.

  • Köhler, W. (1921). The mentality of Apes. London, England: Kegan Paul, Trench, Trubner, 1927.

  • Lorenz, K. (1935). Der Kumpan in der Umwelt des Vogels. Journal fur Ornithologie, 83, 137–213.; 289-413.

  • Lorenz, K. (1988). Hier bin ich - wo bist du? Ethologie der graugans gebundene ausgabe. Verlag: München, Piper.

  • Mascalzoni, E., Regolin, L., & Vallortigara, G. (2010). Innate sensitivity for self-propelled causal agency in newly hatched chicks. Proceedings of the National Academy of Sciences of the United States of America, 107, 4483–4485.

  • Mayer, U., Pecchia, T., Bingman, V. P., Flore, M., & Vallortigara, G. (2016). Hippocampus and medial striatum dissociation during goal navigation by geometry or features in the domestic chick: An immediate early gene study. Hippocampus, 26(1), 27–40.

  • Mayer, U., Bhushan, R., Vallortigara, G., & Lee, S. A. (2017). Representation of environmental shape in the hippocampus of domestic chicks (Gallus gallus). Brain Structure and Function, 2017, 1–13.

  • McCabe, B. J. (2013). Imprinting. Wiley Interdisciplinary Reviews: Cognitive Science, 4(4), 375–390.

  • Partanen, E., Kujala, T., Tervaniemi, M., & Huotilainen, M. (2013). Prenatal music exposure induces long-term neural effects. PLoS ONE, 8(10), e78946.

  • Pattison, K. F., Miller, H. C., Rayburn-Reeves, R., & Zentall, T. (2011). The case of the disappearing bone: Dogs’ understanding of the physical properties of objects. Behavioural Processes, 85(3), 278–282.

  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 33–41.

  • Regolin, L., & Vallortigara, G. (1995). Perception of partly occluded objects by young chicks. Perception and Psychophysics, 57, 971–976.

  • Rosa-Salva, O. R., Regolin, L., & Vallortigara, G. (2010). Faces are special for chicks: Evidence for inborn domain-specific mechanisms underlying spontaneous preferences for face-like stimuli. Developmental Science, 13(4), 565–577.

  • Rosa-Salva, O. R., Farroni, T., Regolin, L., Vallortigara, G., & Johnson, M. H. (2011). The evolution of social orienting: Evidence from chicks (Gallus gallus) and human newborns. PLoS ONE, 6(4), e18802.

  • Rosa-Salva, O. R., Regolin, L., & Vallortigara, G. (2012). Inversion of contrast polarity abolishes spontaneous preferences for face-like stimuli in newborn chicks. Behavioural Brain Research, 228(1), 133–143.

  • Rosa-Salva, O. R., Grassi, M., Lorenzi, E., Regolin, L., & Vallortigara, G. (2016). Spontaneous preference for visual cues of animacy in naïve domestic chicks: The case of speed changes. Cognition, 157, 49–60.

  • Santolin, C., Rosa-Salva, O., Vallortigara, G., & Regolin, L. (2016). Unsupervised statistical learning in newly-hatched chicks. Current Biology, 26, 1218–1220.

  • Schwartz, D. A., Howe, C. Q., & Purves, D. (2003). The statistical structure of human speech sounds predicts musical universals. Journal of Neuroscience, 23(18), 7160–7168.

  • Spalding, D. A. (1873). Instinct, with original observations on young animals. Macmilan’s Magazine, 27, 282–293.

  • Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 89–96.

  • Spelke, E., Lee, S. A., & Izard, V. (2010). Beyond core knowledge: Natural geometry. Cognitive Science, 34(5), 863–884.

  • Stahl, A. E., & Feigenson, L. (2015). Observing the unexpected enhances infants’ learning and exploration. Science, 348(6230), 91–94.

  • Stensola, T., & Moser, E. I. (2016). Grid cells and spatial maps in entorhinal cortex and hippocampus. In G. Buzsáki & Y. Christen (Eds.), Micro-, meso- and macro-dynamics of the brain (pp. 59–80). Berlin, Germany: Springer.

  • Vallortigara, G. (2012). Core knowledge of object, number, and geometry: A comparative and neural approach. Cognitive Neuropsychology, 29(1–2), 37–41.

  • Vallortigara, G. (2017). An animal’s sense of number. In J. W. Adams, P. Barmby, & A. Mesoudi (Eds.), The nature and development of mathematics. Cross disciplinary perspective on cognition, learning and culture (pp. 43–65). New York, NY: Routledge.

  • Vallortigara, G., & Andrew, R. J. (1994). Differential involvement of right and left hemisphere in individual recognition in the domestic chick. Behavioural Processes, 33, 41–58.

  • Vallortigara, G., & Chiandetti, C. (2017). Objects and space in an avian brain. In C. Carel ten Cate & S. D. Healy (Eds.), Avian cognition (pp. 141–162). Cambridge, England: Cambridge University Press.

  • Vallortigara, G., Regolin, L., & Marconato, F. (2005). Visually inexperienced chicks exhibit a spontaneous preference for biological motion patterns. PLOS Biology, 3(7), 1312–1316. (e208).

  • Wagner, A. (1978). Expectancies and the priming of STM. In S. H. Hulse, H. Fowler, & R. Honig (Eds.), Cognitive processes in animal behaviour (pp. 177–209). Hillsdale, NJ: Erlbaum.

  • Yamaguchi, S., Aoki, N., Kitajima, T., Iikubo, E., Katagiri, S., Matsushima, T., & Homma, K. J. (2012). Thyroid hormone determines the start of the sensitive period of imprinting and primes later learning. Nature Communications, 3, 1081.

  • Zanforlin, M. (1981). Visual perception of complex forms (anomalous surfaces) in chicks. Italian Journal of Psychology, 8, 1–16.

OPEN ACCESS

Journal + Issues

Search