Hier bin Ich: Wo bist Du?

Open access

Summary

Since its first description, the imprinting phenomenon has been deeply investigated, and researchers can nowadays provide profound knowledge of its functioning. Here, I present how this peculiar form of early exposure learning can be used as a strategy to study animal cognition. Starting from imprinting as a social trigger for the domestic chick (Gallus gallus) and combining it with the unique possibility of accurate control of sensory experiences in this animal model, I present evidence that in artificial environments, imprinting serves as a rigorous test of the core domains of cognition. Whether basic cognitive concepts are already present at birth or whether they need extensive experience to develop are questions that can be addressed in precocial birds and still, following the tradition of the seminal works made by Lorenz, can inform on human cognitive processing.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aguiar A. & Baillargeon R. (1999). 2.5-month-old infants’ reasoning about when objects should and should not be occluded. Cognitive Psychology 39 116–157.

  • Baillargeon R. (2004). Infants’ physical world. Current Directions in Psychological Science 13(3) 89–94.

  • Baiocchi V. & Chiandetti C. (2016). Chicks run harder toward a consonant over a dissonant clucking hen: Biological roots for the appreciation of consonant sounds. In Trieste Symposium on Perception and Cognition Trieste Italy November 4 P03.

  • Bateson P. P. G. (1964a). Effect of similarity between rearing and testing conditions on chicks’ following and avoidance responses. Journal of Comparative and Physiological Psychology 57(1) 100–103.

  • Bateson P. P. G. (1964b). Changes in chicks’ responses to novel moving objects over the sensitive period for imprinting. Animal Behaviour 7(4) 479–489.

  • Bateson P. P. G. (1990). Is imprinting such a special case? Philosophical Transactions of the Royal Society of London B 329 125–131.

  • Bateson P. P. G. Horn G. & Rose S. P. R. (1973). Imprinting: Lasting effects on Uracil incorporation into chick brain. Science 181 576–578.

  • Bird C. D. & Emery N. J. (2010). Rooks perceive support relations similar to six-month-old babies. Proceedings of the Royal Society of London B: Biological Sciences 277 147–151.

  • Bolhuis J. J. (1991). Mechanisms of avian imprinting: A review. Biological Reviews 66(4) 303–345.

  • Bolhuis J. J. de Vos G. J. & Kruijt J. P. (1990). Filial imprinting and associative learning. The Quarterly Journal of Experimental Psychology 42(3) 313–329.

  • Bowling D. L. & Purves D. (2015). A biological rationale for musical consonance. Proceedings of the National Academy of Sciences of the United States of America 112(36) 11155–11160.

  • Bozzi P. (1990). Fisica ingenua. Oscillazioni piani inclinati e altre storie: studi di psicologia della percezione. Milano Italy: Garzanti.

  • Cacchione T. & Krist H. (2004). Recognizing impossible object relations: Intuitions about support in chimpanzees (Pan troglodytes). Journal of Comparative Psychology 118 140–148.

  • Call J. (2007). Apes know that hidden objects can affect the orientation of other objects. Cognition 105 1–25.

  • Caramazza A. McCloskey M. & Green B. (1981). Naïve beliefs in “sophisticated” subjects: Misconceptions about trajectories of objects. Cognition 9 117–123.

  • Carey S. (2009). The origin of concepts. Oxford England: Oxford University Press.

  • Cheng K. (1986). A purely geometric module in the rat’s spatial representation. Cognition 23(2) 149–178.

  • Cheng K. & Newcombe N. S. (2005). Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin and Review 12(1) 1–23.

  • Chiandetti C. (2016). A commentary on “Cats prefer species-appropriate music. Snowdon C. T. Teie D. Savage M. (2015). Applied Animal Behaviour Science 166 106-111”. Frontiers in Psychology 7 594.

  • Chiandetti C. & Turatto M. (2017). Context-specific habituation of the freezing response in newborn chicks. Behavioral Neuroscience 131(5) 437–446.

  • Chiandetti C. & Vallortigara G. (2008). Is there an innate geometric module? Effects of experience with angular geometric cues on spatial re-orientation based on the shape of the environment. Animal Cognition 11(1) 139–146.

  • Chiandetti C. & Vallortigara G. (2010). Experience and geometry: Controlled-rearing studies with chicks. Animal Cognition 13(3) 463–470.

  • Chiandetti C. & Vallortigara G. (2011a). Chicks like consonant music. Psychological Science 22 1270–1273.

  • Chiandetti C. & Vallortigara G. (2011b). Intuitive physical reasoning about occluded objects by inexperienced chicks. Proceedings of the Royal Society of London B: Biological Sciences 278(1718) 2621–2627.

  • Chiandetti C. Spelke E. S. & Vallortigara G. (2015). Inexperienced newborn chicks use geometry to spontaneously reorient to an artificial social partner. Developmental Science 18(6) 972–978.

  • Chiandetti C. Dissegna A. & Turatto M. (2018). Rapid plasticity attenuation soon after birth revealed by habituation in newborn chicks. Developmental Psychobiology. [in press].

  • Collias N. & Joos M. (1952). The spectrographic analysis of sound signals of the domestic fowl. Behaviour 5 175–188.

  • Daisley J. N. Vallortigara G. & Regolin L. (2010). Logic in an asymmetrical (social) brain: Transitive inference in the young domestic chick. Social Neuroscience 5 309–319.

  • DeCasper A. J. & Fifer W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science 208 1174–1176.

  • Di Giorgio E. Frasnelli E. Rosa Salva O. Scattoni M. L. Puopolo M. Tosoni D. … Vallortigara G. (2016). Difference in visual social predispositions between newborns at low- and high-risk for autism. Scientific Reports 6 26395.

  • Gori S. Molteni M. & Facoetti A. (2016). Visual illusions: An interesting tool to investigate developmental dyslexia and autism spectrum disorder. Frontiers in Human Neuroscience 10 175.

  • Gottlieb G. (1979). Development of species identification in ducklings: V. Perceptual differentiation in the embryo. Journal of Comparative and Physiological Psychology 93 831–854.

  • Heaton M. B. (1972). Prenatal auditory discrimination in the wood duck (Aix sponsa). Animal Behavior 20 421–424.

  • Hetch H. & Proffitt D. R. (1995). The price of expertise: Effects of experience on the water level task. Psychological Science 6 90–95.

  • Horn G. (2004). Pathways of the past: The imprint of memory. Nature Reviews Neuroscience 5 108–120.

  • Horn G. Bradley P. & McCabe B. J. (1985). Changes in the structure of synapses associated with learning. Journal of Neuroscience 5 3161–3168.

  • Johnson M. H. (1992). Imprinting and the development of face recognition: From chick to man. Current Directions in Psychological Science 1 52–55.

  • Johnson M. H. (2005). Subcortical face processing. Nature Reviews Neuroscience 6 766–774.

  • Johnson M. H. & Horn G. (1988). The development of filial preferences in the dark-reared chick. Animal Behaviour 36 675–683.

  • Johnson M. H. Bolhuis J. J. & Horn G. (1992). Predispositions and learning: Behavioural dissociations in the chick. Animal Behavior 44(5) 943–948.

  • Kent J. P. (1993). The chick’s preference for certain features of the maternal cluck vocalization in the domestic fowl (Gallus gallus). Behaviour 125 177–187.

  • Köhler W. (1921). The mentality of Apes. London England: Kegan Paul Trench Trubner 1927.

  • Lorenz K. (1935). Der Kumpan in der Umwelt des Vogels. Journal fur Ornithologie 83 137–213.; 289-413.

  • Lorenz K. (1988). Hier bin ich - wo bist du? Ethologie der graugans gebundene ausgabe. Verlag: München Piper.

  • Mascalzoni E. Regolin L. & Vallortigara G. (2010). Innate sensitivity for self-propelled causal agency in newly hatched chicks. Proceedings of the National Academy of Sciences of the United States of America 107 4483–4485.

  • Mayer U. Pecchia T. Bingman V. P. Flore M. & Vallortigara G. (2016). Hippocampus and medial striatum dissociation during goal navigation by geometry or features in the domestic chick: An immediate early gene study. Hippocampus 26(1) 27–40.

  • Mayer U. Bhushan R. Vallortigara G. & Lee S. A. (2017). Representation of environmental shape in the hippocampus of domestic chicks (Gallus gallus). Brain Structure and Function 2017 1–13.

  • McCabe B. J. (2013). Imprinting. Wiley Interdisciplinary Reviews: Cognitive Science 4(4) 375–390.

  • Partanen E. Kujala T. Tervaniemi M. & Huotilainen M. (2013). Prenatal music exposure induces long-term neural effects. PLoS ONE 8(10) e78946.

  • Pattison K. F. Miller H. C. Rayburn-Reeves R. & Zentall T. (2011). The case of the disappearing bone: Dogs’ understanding of the physical properties of objects. Behavioural Processes 85(3) 278–282.

  • Piazza M. Facoetti A. Trussardi A. N. Berteletti I. Conte S. Lucangeli D. … Zorzi M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition 116 33–41.

  • Regolin L. & Vallortigara G. (1995). Perception of partly occluded objects by young chicks. Perception and Psychophysics 57 971–976.

  • Rosa-Salva O. R. Regolin L. & Vallortigara G. (2010). Faces are special for chicks: Evidence for inborn domain-specific mechanisms underlying spontaneous preferences for face-like stimuli. Developmental Science 13(4) 565–577.

  • Rosa-Salva O. R. Farroni T. Regolin L. Vallortigara G. & Johnson M. H. (2011). The evolution of social orienting: Evidence from chicks (Gallus gallus) and human newborns. PLoS ONE 6(4) e18802.

  • Rosa-Salva O. R. Regolin L. & Vallortigara G. (2012). Inversion of contrast polarity abolishes spontaneous preferences for face-like stimuli in newborn chicks. Behavioural Brain Research 228(1) 133–143.

  • Rosa-Salva O. R. Grassi M. Lorenzi E. Regolin L. & Vallortigara G. (2016). Spontaneous preference for visual cues of animacy in naïve domestic chicks: The case of speed changes. Cognition 157 49–60.

  • Santolin C. Rosa-Salva O. Vallortigara G. & Regolin L. (2016). Unsupervised statistical learning in newly-hatched chicks. Current Biology 26 1218–1220.

  • Schwartz D. A. Howe C. Q. & Purves D. (2003). The statistical structure of human speech sounds predicts musical universals. Journal of Neuroscience 23(18) 7160–7168.

  • Spalding D. A. (1873). Instinct with original observations on young animals. Macmilan’s Magazine 27 282–293.

  • Spelke E. S. & Kinzler K. D. (2007). Core knowledge. Developmental Science 10 89–96.

  • Spelke E. Lee S. A. & Izard V. (2010). Beyond core knowledge: Natural geometry. Cognitive Science 34(5) 863–884.

  • Stahl A. E. & Feigenson L. (2015). Observing the unexpected enhances infants’ learning and exploration. Science 348(6230) 91–94.

  • Stensola T. & Moser E. I. (2016). Grid cells and spatial maps in entorhinal cortex and hippocampus. In G. Buzsáki & Y. Christen (Eds.) Micro- meso- and macro-dynamics of the brain (pp. 59–80). Berlin Germany: Springer.

  • Vallortigara G. (2012). Core knowledge of object number and geometry: A comparative and neural approach. Cognitive Neuropsychology 29(1–2) 37–41.

  • Vallortigara G. (2017). An animal’s sense of number. In J. W. Adams P. Barmby & A. Mesoudi (Eds.) The nature and development of mathematics. Cross disciplinary perspective on cognition learning and culture (pp. 43–65). New York NY: Routledge.

  • Vallortigara G. & Andrew R. J. (1994). Differential involvement of right and left hemisphere in individual recognition in the domestic chick. Behavioural Processes 33 41–58.

  • Vallortigara G. & Chiandetti C. (2017). Objects and space in an avian brain. In C. Carel ten Cate & S. D. Healy (Eds.) Avian cognition (pp. 141–162). Cambridge England: Cambridge University Press.

  • Vallortigara G. Regolin L. & Marconato F. (2005). Visually inexperienced chicks exhibit a spontaneous preference for biological motion patterns. PLOS Biology 3(7) 1312–1316. (e208).

  • Wagner A. (1978). Expectancies and the priming of STM. In S. H. Hulse H. Fowler & R. Honig (Eds.) Cognitive processes in animal behaviour (pp. 177–209). Hillsdale NJ: Erlbaum.

  • Yamaguchi S. Aoki N. Kitajima T. Iikubo E. Katagiri S. Matsushima T. & Homma K. J. (2012). Thyroid hormone determines the start of the sensitive period of imprinting and primes later learning. Nature Communications 3 1081.

  • Zanforlin M. (1981). Visual perception of complex forms (anomalous surfaces) in chicks. Italian Journal of Psychology 8 1–16.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 331 175 12
PDF Downloads 181 121 9