Univalence Criteria for a General Integral Operator

Camelia Bărbatu 1  and Daniel Breaz 2
  • 1 ”Babeş-Bolyai” University, 400084, Cluj-Napoca, Romania
  • 2 ”1 Decembrie 1918” University of Alba Iulia, 510009, Alba-Iulia, Romania

Abstract

In this paper we introduce a new general integral operator for analytic functions in the open unit disk 𝕌 and we obtain sufficient conditions for univalence of this integral operator.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] C. L. Aldea, V. Pescar, Univalence Criteria for a general integral operator, Transilvania University of Brasov, vol. 10, no. 2, 2017, 19-30.

  • [2] D. Breaz, N. Breaz, Two Integral Operators, Studia Univ.”Babes-Bolyai”, Cluj-Napoca, Mathematica, vol. 47, no. 3, 2002, 13-21.

  • [3] D. Breaz, N. Breaz, H. M. Srivastava, An extension of the univalent condition for a family of integral operators, Appl. Math. Lett., vol. 22, no. 3, 2009, 41-44.

  • [4] D. Breaz, S. Owa, N. Breaz, A new integral univalent operator, Acta Universitatis Apulensis, vol. 16, 2008.

  • [5] B. A. Frasin, Order of convexity and univalence of general integral operator, Journal of the Franklin, vol. 348, 2011, 1012-1019.

  • [6] B. A. Frasin, Sufficient conditions for the univalence of an integral operator, Asia Pacific Journal of Mathematics, vol.5, no.1, 2018, 85-91.

  • [7] I. J. Kim, E. P. Merkes, On an integral of powers of a spirallike function, Kyungpook Math. J., vol. 12, no. 2, 1972, 249-253.

  • [8] O. Mayer, The Functions Theory of the One Variable Complex, Acad. Ed., Bucuresti, Romania, 1981, 101-117.

  • [9] H. Oversea, Integral operators of Bazilvic type, Bull. Math. Bucuresti, vol. 37, 1993, 115-125.

  • [10] S. Ozaki, M. Nunokawa, The Schwarzian derivative and univalent functions, Proceedings of the American Mathematical Society, Mathematics, vol. 33, 1972, 392-394.

  • [11] N. N. Pascu, An improvement of Beker’s univalence criterion, Proceedings of the Commemorative Session Simion Stoilov, University of Braso, 1987, 43-48.

  • [12] N. N. Pascu, V. Pescar, On the integral operators Kim-Merkes and Pfaltzgra, Mathematica, UBB, Cluj-Napoca, vol. 32, no. 2, 1990, 185-192.

  • [13] V. Pescar, New univalence criteria for some integral operators, Studia Univ.”Babes-Bolyai”, Cluj-Napoca, Mathematica, vol. 59, no. 2, 2014, 185-192.

  • [14] V. Pescar, A new generalization of Ahlfors’s and Becker’s criterion of univalence, Bulletin of Malaysian Mathematical Society, vol. 19, no.2, 1996, 53-54.

  • [15] V. Pescar, Univalence criteria of certain integral operators, Acta Ciencia Indica, Mathematics, vol. 29, no. 1, 2003, 135-138.

  • [16] V. Pescar, On the univalence of some integral operators, General Mathematics, vol. 14, no. 2, 2006, 77-84.

  • [17] V. Pescar, S. Owa, Univalence of certain integral operators, Int. J. Math. Math. Sci., vol. 23, 2000, 697-701.

  • [18] J. Pfaltzgraff, Univalence of the integral of (f′ (z))λ, Bull. London Math. Soc., vol. 7, no. 3, 1975, 254-256.

  • [19] L. Stanciu, The Univalence conditions of some integral operators, Abstract and Applied Analysis, ID 924645, 2012, 9 pages.

  • [20] L. F. Stanciu, D. Breaz, H. M. Srivastava, Some criteria for univalence of a certain integral operator, Novi Sad J. Math. vol. 43, no. 2, 2013, 51-57.

  • [21] P. T. Mocanu, T. Bulboaca, G. S. Salagean, Teoria geometrica a functiilor univalente, Casa Cartii de Stiinta, Cluj Napoca, 1999, 77-81.

OPEN ACCESS

Journal + Issues

Search