𝕀*µ open sets in generalized topological spaces

  • 1 Presidency University, 700073, Kolkata, India
  • 2 Women’s Christian College, 700026, Kolkata, India

Abstract

In this paper we have introduced two new types of sets termed as 𝕀*µ sets and strongly 𝕀*µ -open sets and discussed some of its properties. The relation between similar types of sets, characterizations and some basic properties of such sets have been studied.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] F. G. Arenas, J. Dontchev, M. L. Puertas, Idealization of some weak separation axioms, Acta Math. Hungar., vol. 89, 2000, 47-53.

  • [2]Á. Császár, Generalized open sets, Acta Math. Hungar., vol. 75, 1997, 65-87.

  • [3]Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., vol. 96, 2002, 351-357.

  • [4]Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., vol. 106, 2005, 53-66.

  • [5]Á. Császár, Remarks on quasi topologies, Acta Math. Hungar., vol. 119, 2008, 197-200.

  • [6]Á. Császár, - and -modifications of generalized topologies, Acta Math. Hungar., vol. 120, 2008, 275-279.

  • [7] E. Ekici, Generalized submaximal spaces, Acta Mathematica Hungarica, vol. 134, no. 1-2, 2012, 132-138.

  • [8] E. Ekici, Further new generalized topologies via mixed constructions due to Császár, Mathematica Bohemica, vol. 140, no. 1, 2015, 1-9.

  • [9] E. Ekici, On weak structures due to Császár, Acta Mathematica Hungarica, vol. 134, no. 4, 2012, 565-570.

  • [10] E. Ekici, p*I -open sets in ideal spaces, Tibilisi Mathematical Journal, vol. 10, no. 2, 2017, 83-89.

  • [11] E. Ekici, On 𝔸*𝕀 -sets𝕀 -sets, ℂ*𝕀 -sets and decompositions of continuity in ideal topological spaces, Analele Stiintifice Ale Universitatii Al. I. Cuza Din Iasi (S. N.) Matematica, Tomul LIX, f. 1, 2013, 173-184.

  • [12] E. Ekici, Generalized hyperconnectedness, Acta Math. Hungar., vol. 133, no. 1-2, 2011, 140-147.

  • [13] E. Ekici, T. Noiri, *-extremally disconnected ideal topological spaces, Acta Math. Hungar., vol. 122, 2009, 81-90.

  • [14] E. Ekici, T. Noiri, *-hyperconnected ideal topological spaces, Analele Stiintifice Ale Universitatii Al. I. Cuza Din Iasi (S. N.) Matematica, Tomul LVIII, f.1, 2012, 121-129.

  • [15] E. Ekici, T. Noiri, Properties of I-submaximal ideal topological spaces, Filomat, vol.24, no.4, 2010, 87-94.

  • [16] E. Hatir, T. Noiri, On Semi-𝕀-open set and semi- 𝕀-continuous functions, Acta Math. Hungar., vol. 107, 2005, 345-353.

  • [17] D. Jankovic, T. R. Hamlett, New topologies from old via Ideals, Amer. Math. Monthly, vol. 97, 1990, 295-310.

  • [18] K. Kuratowski, Topology, New York, Academic Press, vol. 1, 1966.

  • [19] M. N. Mukherjee, B. Roy, R. Sen, On extension of topological spaces in terms of ideals, Topology and its Applications, vol. 154, 2007, 3167-3172.

  • [20] A. Nasef, R. Mareay, F. Michael, Idealization of some topological concepts, Eur. Jour. Pure Appl. Math., vol. 8, 2015, 389-394.

  • [21] B. Roy, R. Sen, Generalized semi-open and pre-semiopen sets via ideals, Transactions of A. Razmadze Mathematical Institute, vol. 172, no. 1, 2018, 95-100.

  • [22] R. X. Shen, A note on generalized connectedness, Acta Math. Hungar., vol. 122, 2009, 231-235.

  • [23] R. Vaidyanathaswamy, The localization theory in set-topology, Proceedings of the Indian Acad. Sci., vol. 20, 1945, 15-51.

  • [24] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Springer Verlag, Berlin Heildelberg New York, 1993.

  • [25] S. Ishikawa, Fixed point and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., vol. 73, no. 2, 1976, 65-71.

OPEN ACCESS

Journal + Issues

Search