Two-mica andalusite-bearing granite with no primary muscovite: constraints on the origin of post-magmatic muscovite in two-mica granites

Open access

Abstract

The two-mica granite from Gęsiniec (Strzelin Granitic Massif, SW Poland) consists of quartz, K-feldspar, normally zoned plagioclase (30 ± 7 % An), subordinate biotite and muscovite and magmatic andalusite. Andalusite crystallised before the outer parts of plagioclase grains were formed. Biotite has constant Fe/(Fe + Mg) ratio of approximately 0.81. Five textural types of muscovite occur in the granite: (1) muscovite replacing andalusite, (2) embayed interstitial muscovite, (3) muscovite forming aggregates with biotite, (4) muscovite accompanying biotite and chlorite in microfissures and (5) fine muscovite forming fringes at the contact between larger muscovite plates and K-feldspar. They are commonly associated with albite.

Crystallisation of muscovite started significantly below the granite solidus, mostly by the replacement of andalusite. Formation of muscovite continued during cooling of host rock. The growth of individual plates was initiated at different undercoolings and the plates whose crystallisation was frozen at different stages of growth occur. Those that were formed earlier are richer in titanium and iron relative to the later ones. As the rock contains no Ti and Fe saturating phases, the content of Ti and Mg in muscovite depends on their local availability. The homogeneous Fe/(Fe + Mg) ratio of biotite indicates that it was re-equilibrated at the post-magmatic stage.

References

  • [1] Bailey S.W. 1980. Summary and recommendation of AIPEA nomenclature committee on clay minerals. Amer. Miner., 65: 1-7.

  • [2] Chatterjee N., Johannes W. 1974. Thermal stability and standard thermodynamic properties of synthetic 2M1 muscovite KAl2[A1Si3O10(OH)2]. Contrib. Miner. Petrol., 48: 89-114.

  • [3] Bereś B. 1961. On the occurrence of andalusite in the granite of the Strzelin Massif. Zesz. Nauk. U. Wr., B6: 155-166.

  • [4] Chorlton L.B., Martin R.F. 1978. The effect of boron on the granite solidus. Can. Mineral., 16: 239-244.

  • [5] Clarke D.B., Dorais M., Barbarin B., Barker D., Cesare B., Clarke A., El Baghdadi M., Erdmann S., Forster H.-J., Gaeta M., Gottesmann B., Jamieson R.A., Kontak D.J., Koller F., Gomes C.L., London D., Morgan VI G.B., Neves L.J.P.F., Pattison D.R.M., Pereira A.J.S.C. Pichavant M., Rapela C.W., Renno A.D., Richards S., Roberts M., Rottura A., Saavedra J., Sial A.N., Toselli A.J., Ugidos J.M., Uher P., Villaseca C., Visona D., Whitney D.L., Williamson B., Woodard H.H. 2005. Occurrence and origin of andalusite in peraluminous felsic igneous rocks. J. Petrol., 46: 441-472.

  • [6] Holdaway M.J. 1971. Stability of andalusite in the aluminum silicate phase diagram. Am. J. Sci., 271: 97-131.

  • [7] Holtz F., Johannes W., Pichavant M. 1992. Effect of excess aluminium on phase relations in the system Qz-Ab-Or: experimental investigation at 2 kbar and reduced H2O activity. Eur. J. Mineral., 4: 137-152.

  • [8] Joyce D.B., Voigt D.E. 1994. A phase equilibrium study in the system KAISi3O8-NaAlSi3O8-SiO2-Al2SiO5-H2O and petrogenetic implications. Am. Mineral., 79: 504-512.

  • [9] Kretz R. 1983. Symbols for rock-forming minerals. Am. Mineral., 68: 277-279.

  • [10] Manning D.A.C. 1981. The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib. Miner. Petrol., 76: 206-215.

  • [11] Miller C.F., Stoddard E.F., Bradfish L.J., Dollase W.A. 1981. Composition of plutonic muscovite: genetic implications. Can. Mineral., 19: 25-34.

  • [12] Oberc-Dziedzic T., Pin C., Duthou J.L., Couturie, J.P. (1996): Age and origin of the Strzelin granitoids (Fore-Sudetic Block, Poland): 87Rb/86Sr data Neues Jahrb. Miner. Abh., 171: 187-198.

  • [13] Oberc-Dziedzic, T., Kryza, R., 2012. Late stage Variscan magmatism in the Strzelin Massif (SW Poland): SHRIMP zircon ages of tonalite and Bt-Ms granite of the Gęsiniec intrusion. Geological Quarterly, 56 (2): 225-236.

  • [14] Oberc-Dziedzic, T., Kryza, R., Białek, J., 2010. Variscan multi stage granitoid magmatism in Brunovistulicum: petrological and SHRIMP U/Pb zircon geochronological evidence from the southern part of the Strzelin Massif, SW Poland. Geological Quarterly, 54 (3): 301-324.

  • [15] Oberc-Dziedzic, T., Kryza, R., Pin, C., Madej, S., 2013. Variscan granitoid plutonism in the Strzelin Massie (SW Poland): petrology and age of the composite Strzelin intrusion. Geological Quarterly, 57 (2): 269-288.

  • [16] Oberc-Dziedzic, T., Kryza, R., Pin, C., 2015. Last stage of Variscan granitoid magmatism in the Strzelin Massif (SW Poland): petrology and age of biotite granite. Geological Quarterly, 59 (4): 718-737.

  • [17] Oberc-Dziedzic, T., Kryza, R., Klimas, K., Fanning, M.C., 2003. SHRIMP U/Pb zircon geochronology of the Strzelin gneiss, SW Poland: evidence for a Neoproterozoic thermal event in the Fore-Sudetic Block, Central European Variscides. Int. J. Earth Sci., 92: 701-711.

  • [18] Pichavant M. 1981. An experimental study of the effect of boron on a water-saturated haplogranite at 1 kbar vapour pressure. Contrib. Miner. Petrol., 76: 430-439.

  • [19] Pichavant M., Kontak D.J., Herrera J.V., Clark A.H. 1988. The Miocene- Pliocene Macusani Volcanics, SE Peru. 1. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite. Contrib. Mineral. Petrol., 100: 300-324.

  • [20] Pietranik A., 2013, Dating zircon from the Gęsiniec Intrusion by LAICPMS (Laser Ablation - Inductively Coupled Plasma Mass Spectrometry). Geoscience Notes 1, 63-67.

  • [21] Pietranik A., Koepke J., 2009. Interactions between dioritic and granodioritic magmas in mingling zones: plagioclase record of mixing, mingling and subsolidus interactions in the Gęsiniec Intrusion, NE Bohemian Massif, SW Poland. Contr. Miner. Petr., 158: 17-36.

  • [22] Pietranik A., Waight T., 2008. Processes and sources during Late Variscan dioritic-tonalitic magmatism: insights from plagioclase chemistry (Gęsiniec Intrusion, NE Bohemian Massif, Poland). J. Petrol., 49: 1619-1645.

  • [23] Puziewicz J., Koepke, J. 1991. Controls on TiO2 content in muscovite and biotite from a two-mica granite, the Strzegom Sobotka Massif, Sudetes, SW Poland. Neues Jahrb. Miner., Monatsh., 1991: 253-261.

  • [24] Richardson S.W., Gilbert M.C., Bell P.M. 1969. Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point. Amer. Jour. Sci. 267: 259-272.

  • [25] Speer J.A. 1984. Micas in igneous rocks. Rev. Mineral.,13: 299-356.

  • [26] Tuttle O.F., Bowen, N.L. 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geolog. Soc. Am. Mem., 74: 1-153.

  • [27] Zen, E-An 1988. Phase relations of peraluminous granitic rocks and their petrogenetic implications. Ann. Rev. Earth Planet. Sci., 1988: 21-51.

Geoscience Records

an Interdisciplinary Journal of Earth Sciences

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 42 42 17
PDF Downloads 6 6 1