Carbon, Nitrogen and Sulphur concentration and δ13C, δ15N values in Hypogymnia physodes within the montane area – preliminary data

Open access


The contribution of C, N and S, as well as the isotopic composition of C and N of atmospheric pollutants, are assumed to be reflected in the organic compounds inbuilt into the lichen thallus. The chemical and isotopic analyses were carried out on lichen Hypogymnia physodes samples gathered from Picea abies and Larix decidua, collected in 13 sampling points located in Karkonoski National Park and its closest vicinity in 2011. The results for %C, %N and %S varied from 43.44 to 46.79%, from 0.86 to 1.85% and from 0.07 to 0.27 %, respectively. The δ13C values ranged from −26.6 to −24.6‰, whereas δ15N values varied from −13.0 to −6.8‰. The ranges in isotope composition suggest different sources of C and N for Karpacz compared to the remaining sampling sites. For Karpacz, the δ13C values suggest (in case the fractionation product-substrate does not exist and Δ=0) that the dominant sources are coal combustion processes, whereas for remaining sampling points, the δ13C values are ambiguous and are masked by many mixed natural and anthropogenic processes. With the same assumption that Δ=0, the δ15N values suggest that transport is not a dominant source of nitrogen within Karpacz city. Moreover, in this study we tested the possible fractionation (Δ) for carbon and nitrogen, assuming that within the investigated area, the source of carbon is probably CO2 and/or DIC (HCO3) dissolved in precipitation, while the source of nitrogen is NOx and/or NO3 ion. The calculated fractionation factors were: (i) for gaseous carbon compounds ΔCO2-Corg value from −13.4 to −11.4‰, whereas for the ions form ΔHCO3-Corg value from −16.6 to −14.6‰, (ii) for nitrogen gaseous compounds ΔNOx-Norg value between apx. −17 and −5‰, whereas for the ions form ΔNO3-Norg value between −9.9 and −3.7‰.


  • [1] Ahmadjian, V. 1993. The Lichen Symbiosis. John Wiley & Sons.

  • [2] Beck, A., Mayr, C. 2012. Nitrogen and carbon isotope variability in the green-algal lichen Xanthoria parietina and their implications on mycobiont–photobiont interactions. Ecol. Evol., 2(12): 3132–3144.

  • [3] Berlizov, A.N., Blum, O.B., Filby, R.H., Malyuk, I.A., Tryshyn, V.V. 2007. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Sci. Total Environ., 372: 693–706.

  • [4] Biazrov, L.G. 2012a. Stable Nitrogen Isotopes (δ15N) in Thalli of the Lichen Hypogymnia physodes along a Altitudinal Gradient in the Khangai Plateau, Mongolia. Russ. J. Ecol., 43(3): 185–190.

  • [5] Biazrov, L.G. 2012b. Values of Stable Carbon Isotopes (δ13C) in the Thalli of the Arid Vagrant Lichen Xanthoparmelia camtschadalis along an Altitudinal Gradient in the Khangai Plateau as a Reflection of the Spatial and Ecological Heterogeneity of the Semiarid Region of Mongolia. Arid Ecosystems, 2(1): 54–60.

  • [6] Boltersdorf S.H., Werner, W. 2014. Lichens as a useful mapping tool?—an approach to assess atmospheric N loads in Germany by total N content and stable isotope signature. Environ. Monit. Assess., 186: 4767–4778.

  • [7] Bonanno, G. 2013. Nitrogen multitemporal monitoring through mosses in urban areas affected by mud volcanoes around Mt. Etna, Italy. Environ. Monit. Assess., 185: 8115–8123.

  • [8] Bosch-Roig, P., Barca D., Crisci, G.M., Lalli, C. 2013. Lichens as bioindicators of atmospheric heavy metal deposition in Valencia, Spain. J. Atmos. Chem., 70: 373–388.

  • [9] Bruteig, I. E. 1992. The epiphytic lichen Hypogymnia physodes as a biomonitor of atmospheric nitrogen and sulphur deposition in Norway. Environ. Monit. Assess.t, 26(1): 27–47.

  • [10] Carballeira, A., Fernándèz, J.A. 2002. Bioconcentration of metals in the moss Scleropodium purum in the area surrounding a power plant. A geotopographical predictive model for mercury. Chemosphere, 47: 1041–1048.

  • [11] Cekstere, G., Laivins, M., Osvalde A. 2015. Chemical Composition of Scots Pine Bark as a Bioindicator of Environmental Quality in Riga, Latvia. Proceedings Of The Latvian Academy Of Sciences. Section B, Vol. 69, No. 3 (696): 87–97.

  • [12] Ciężka, M., Tyszka, R., Łubek, A., Lewińska, A., Jezierski, A., Widory, D., Górka, M. 2016. Influence of the atmospheric gaseous pollutants (SO2, NO2) on heavy metals and free radicals concentration in lichen Hypogymnia physodes: Świętokrzyski National Park case study. Conference abstract, in press.

  • [13] Conti, M.E., Cecchetti G. 2001. Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environ. Pollut., 114: 471–492.

  • [14] Cowden, P., Liang, T., Aherne J. 2015. Mosses as bioindicators of air pollution along an urban-agricultural transect in the Credit River Watershed, southern Ontario, Canada. Annali Di Botanica, 5: 39–46.

  • [15] Cuna, S., Balas, G., Hauer, E. 2007. Effects of natural environmental factors on δ13C of lichens. Isot. Environ. Health Stud., 43(2): 95–104.

  • [16] Dahlman, L., Persson, J., Palmqvist, K., Näsholm, T. 2004. Organic and inorganic nitrogen uptake in lichens. Planta, 219: 459–467.

  • [17] Felix, J.D., Elliott, E.M., Gish, T.J., McConnell, L.L., Shaw, S.L. 2013. Characterizing the isotopic composition of atmospheric ammonia emission sources using passive samplers and a combined oxidation-bacterial denitrifier approach. Rapid Commun. Mass Spectrom., 27: 2239–2246.

  • [18] Fernándèz, J.A., Rey, A., Carballeira, A., 2000. Differences in the responses of native and transplanted mosses to atmospheric pollution: a possible role of selenium. Environ. Pollut., 110: 73–78.

  • [19] Freyer, H.D. 1978. Seasonal trends of NH4+ and NO3 nitrogen isotope composition in rain collected at Juelich, Germany. Tellus, 30: 83–92.

  • [20] Freyer, H.D., 1991. Seasonal variation of 15N/14N ratios in atmospheric nitrate species. Tellus, 43B: 30-44.

  • [21] Fuentes, J.M.C., Rowe, J.G., 1998. The effect of air pollution from nitrogen dioxide (NO2) on epiphytic lichens in Seville, Spain. Aerobiologia, 14(2): 241–247.

  • [22] Galsomies, L., Letrouit, M.A., Deschamps, C., Savanne, D., Avnaim, M., 1999. Atmospheric metal deposition in France: initial results on moss calibration from the 1996 biomonitoring. Sci. Total Environ., 232: 39–47.

  • [23] Gałuszka, A. 2005. The chemistry of soils, rocks and plant bioindicators in three ecosystems of the holy cross mountains, Poland. Environ. Monit. Assess., 110: 55–70.

  • [24] Gerdol, R., Bragazza, L., Marchesini, R., Alber, R., Bonetti, L., Lorenzoni, G., Achilli, M., Buffoni, A., DeMarco, N., Franchi, M., Pison, S., Giaquinta, S., Palmieri, F., Spezzanto, P. 2000. Monitoring of heavy metal deposition in Northern Italy by moss analysis. Environ. Pollut., 108: 201–208.

  • [25] Gombert, S., Asta, J., Seaward, M.R.D. 2003. Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environ. Pollut., 123: 281–290.

  • [26] Gorshghov, A.G., Mikhailova, T.A., Berezhnaya, N.S., Vereshchagina A.L. 2008. Needle of Scotch Pine (Pinus sylvestris L.) as a Bioindicator for Atmospheric Pollution with Polycyclic Aromatic Hydrocarbons. Chemistry for Sustainable Development, 16: 155–162.

  • [27] Hauck, M. 2010. Ammonium and nitrate tolerance in lichens. Environ. Pollut., 158: 1127–1133.

  • [28] Heaton, T. H. E. 1987. 15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa. Atmos. Environm., 21: 843–852.

  • [29] Górka, M., Sauer, P.E., Lewicka-Szczebak, D., Jędrysek, M. O. 2011. Carbon isotope signature of dissolved inorganic carbon (DIC) in precipitation and atmospheric CO2. Environ. Pollut., 159: 294–301.

  • [30] Jeran, Z., Mrak, T., Jaćimović, R., Batic, F., Kastelec, D., Masvar, R., Simoncic, P. 2007. Epiphytic lichens as biomonitors of atmospheric pollution in Slovenian forests. Environ. Pollut., 146: 324–331.

  • [31] Jędrysek, M.O., Kalużny, A., Hoefs, J. 2002. Sulphur and oxygen isotope ratios in spruce needles as a tracer of atmospheric pollution. J. Geophys. Res.: Atmospheres, 107: 4353–4365.

  • [32] Jóźwiak, M. 2007. Kumulacja metali ciężkich i zmiany morfologiczne w plechach porostu Hypogymnia physodes (L.) Nyl. Monitoring Środowiska Przyrodniczego, 8: 51–56.

  • [33] Kłos, A. 2007. Porosty - biowskaźniki i biomonitory zanieczyszczenia powietrza. Chemia, Dydaktyka, Ekologia, Metrologia, 12: 61–77.

  • [34] Kosior, G., Ciężka, M., Górka, M., Samecka-Cymerman, A., Kolon, K., Kempers, A. J., Jędrysek M. O. 2015. δ34S values and S concentrations in native and transplanted Pleurozium schreberi in a heavily industrialised area. Ecotoxicol. Environ. Saf., 118: 112–117.

  • [35] Kosior, G., Samecka-Cymerman, A., Chmielewski A., Wierzchnicki, R., Derda, M., Kempers A. J. 2008. Native and transplanted Pleurozium schreberi (Brid.)Mitt. as a bioindicator of N deposition in a heavily industrialized area of Upper Silesia (S Poland). Atmos. Environ., 42(6): 1310–1318.

  • [36] Kossowska, M., Fałtynowicz, W., Dimos-Zych, M., 2014. Porosty wracają w Karkonosze – wstępne wyniki 2 etapów monitoringu lichenologicznego w Karkonoskim Parku Narodowym – In: Otte V. (red.), Tagung „Umwelt im Wandel – das schwarze Dreieck wird wieder bunt” Peckiana, 9: 45–48.

  • [37] Kwiatkowski, J., Hołdys, T. 1985. Klimat. – In: Jahn A. (ed.), Karkonosze polskie. Ossolineum, Wrocław, 85–116.

  • [38] Laxton, D.L., Watmough, S.A., Aherne, J., Straker, J. 2010. An assessment of nitrogen saturation in Pinus banksiana plots in the Athabasca Oil Sands Region, Alberta. J. Limnol., 69(1): 171–180.

  • [39] LeBlanc, F., DeSloover, J. 1970. Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Can. J. Bot., 48: 1485–1496.

  • [40] Lippo, H., Poikolainen, J., Kubin, E. 1995. The use of moss, lichen and pine bark in the nationwide monitoring of atmospheric heavy metal deposition in Finland. Water Air Soil Pollut., 85 (4): 2241–2246.

  • [41] Maguas, C., Griffiths, H., Broadmeadow M.S.J. 1995. Gas exchange and carbon isotope discrimination in lichens: Evidence for interactions between CO2-concentrating mechanisms and diffusion limitation. Planta, 196: 95–102.

  • [42] Mandiwana, K.L., Resane, T., Panichev, N., Ngobeni, P., 2006. The application of tree bark as bio-indicator for the assessment of Cr(VI) in air pollution. Journal of Hazardous Materials, B137: 1241–1245.

  • [43] Manninen, S., Huttunen S., Torvela, H. 1991. Needle and lichen sulphur analyses on two industrial gradients. Water Air Soil Pollut., 59: 153–163.

  • [44] Michener, R., Lajtha K. 2007. Stable Isotopes in Ecology and Environmental Science.

  • [45] Migaszewski, Z.M., Gałuszka, A., Świercz, A., Kucharczyk, J. 2001. Element concentrations in soils and plant bioindicators in selected habitats of the Holy Cross Mountains, Poland. Water Air Soil Pollut., 129: 369–386.

  • [46] Migaszewski, Z.M., Lamothe, P.J., Crock, J.G., Gałuszka, A., Dołęgowska S. 2011. The role of sample preparation in interpretation of trace element concentration variability in moss bioindication studies. Environmental Chemistry Letters, 9: 323–329.

  • [47] Migaszewski, Z. M., Pasławski, P., Hałas, S., Durakiewicz. 1995. Wpływ pierwiastków śladowych i izotopów siarki na środowisko naturalne Gór Świętokrzyskich. Przegląd Geologiczny, 43(6): 472–477.

  • [48] Misra, M., Tandon, P.K. 2014. Heavy metal accumulation and chlorophyll content in moss samples collected from heavy traffic sites. Res. in Environ. Life Sci., 7 (2): 111–114.

  • [49] Moore, H., 1977. The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere. Atmos. Environm., 11: 1239–1243.

  • [50] Munzi, S., Ravera, S., Caneva, G. 2007. Epiphytic lichens as indicators of environmental quality in Rome. Environ. Pollut., 146: 350–358.

  • [51] Poikolainen, J. 1997. Sulphur and heavy metal concentrations in Scots pine bark in northern Finland and the Kola Peninsula. Water Air Soil Pollut., 93: 395–408.

  • [52] Poikolainen, J., Lippo H., Hongisto, M., Kubin, E., Mikkola, K., Lindgrend, M. 1998. On the abundance of epiphytic green algae in relation to the nitrogen concentrations of biomonitors and nitrogen deposition in Finland. Environ. Pollut., 102: 85–92.

  • [53] Rautio, P., Huttunen, S. 2003. Total vs. internal element concentrations in Scots pine needles along a sulphur and metal pollution gradient. Environ. Pollut., 122: 273–289.

  • [54] Samecka-Cymerman, A., Kolon, K., Kempers, A. J. 2011. Taxus baccata as a bioindicator of urban environmental pollution. Pol. J. Environ. Stud., 20: 1021–1027.

  • [55] Sawidis, T., Breuste, J., Mitrovic, M., Pavlovic, P. and Tsigaridas, K. 2011. Trees as bioindicator of heavy metal pollution in three european cities. Environ. Pollut., 159 3560–3570.

  • [56] Sawicka-Kapusta, K., Zakrzewska, M. 2009. Ocena zanieczyszczeń powietrza na podstawie zawartości siarki i metali ciężkich w porostach w roku 2009 - okazy naturalne. Raport o stanie środowiska przyrodniczego zlewni ZMŚP “Pożary” w 2009 roku.

  • [57] Sawicka-Kapusta, K., Zakrzewska, M., Bydłoń, G., Hajduk, J. 2010 Ocena zanieczyszczenia powietrza stacji bazowych ZMŚP metalami ciężkimi i dwutlenkiem siarki w latach 2001–2009 z wykorzystaniem porostu Hypogymnia physodes. Monitoring Środowiska Przyrodniczego, Kieleckie Towarzystwo Naukowe, 11: 63–71. [Air pollution of monitoring base stations ZMŚP with heavy metals and sulphur dioxide in 2001–2009 using Hypogymnia physodes lichens (in Polish)].

  • [58] Sobik, M., Błaś, M., Migała, K., Godek, M., Nasiółkowski, T. 2014. Klimat. – In: Knapik R. & Raj A. (eds.) Przyroda Karkonoskiego Parku Narodowego. Karkonoski Park Narodowy, Jelenia Góra, 147–186.

  • [59] Tonneijk, A.E.G., Posthumus, A. C. 1987. Use of indicator plants for biological monitoring of effects of air pollution: The Dutch approach. Verein Deutscher Ingenieure-Berichte, 609: 205–216.

  • [60] van Dobben, H. F., Wolterbeek, H.Th., Wamelink, G.W.W., Ter Braak, C.J.F. 2001. Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environ. Pollut., 112: 163–169.

  • [61] Voivodeship Inspectorate for Environment Protection (VIEP) in Wrocław. 2011. Report on State of Environment in Lower Silesia in 2010 (available online: 22.08.2016)

  • [62] Wadleigh, M. A. 2003. Lichens and atmospheric sulphur: what stable isotopes reveal. Environ. Pollut., 126: 345–351.

  • [63] Wadleigh, M. A., H. P. Schwarcz, J. R. Kramer. (1996). Isotopic evidence for the origin of sulphate in coastal rain. Tellus B, 48(1): 44–59.

  • [64] Widory, D. 2006. Combustion, fuels and their combustion products (CO2 and particles): A view through carbon isotopes. Combust. Theor. Model, 10, 5: 831–841.

  • [65] Zechmeister, H.G., Hohenwallner, D., Riss, A., Hanus-Illnar, A. 2003. Variations in heavy metal concentrations in the moss species Abietinella abietina (Hedw.) Fleisch. according to sampling time, within site variability and increase in biomass. Sci. Total Environ., 301: 55–65.

Geoscience Records

an Interdisciplinary Journal of Earth Sciences

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 9
PDF Downloads 7 7 2