Anti-predator adaptations in a great scallop (Pecten maximus) – a palaeontological perspective

Open access


Shelly fauna was exposed to increased pressure exerted by shell-crushing durophagous predators during the so-called Mesozoic Marine Revolution that was initiated in the Triassic. As a result of evolutionary ‘arms race’, prey animals such as bivalves, developed many adaptations to reduce predation pressure (e.g. they changed lifestyle and shell morphology in order to increase their mechanical strength). For instance, it was suggested that Pectinidae had acquired the ability to actively swim to avoid predator attack during the early Mesozoic. However, pectinids are also know to have a specific shell microstructure that may effectively protect them against predators. For instance, we highlight that the shells of some recent pectinid species (e.g. Pecten maximus) that display cross-lamellar structures in the middle part playing a significant role in the energy dissipation, improve the mechanical strength. In contrast, the outer layers of these bivalves are highly porous, which allow them to swim more efficiently by reducing the shell weight. Pectinids are thus perfect examples of animals optimising their skeletons for several functions. We suggest that such an optimisation of their skeletons for multiple functions likely occurred as a results of increased predation pressure during the so-called Mesozoic Marine Revolution.

[1] Ansell A.D. 1969. Leaping movements in the Bivalvia. J. Mollus. Stud., 38, 5: 387–399.

[2] Baird R.H. 1958. On the swimming behavior of escallops (Pecten maximus L.). Proceedings of the Malacological Society of London, 33: 67–61.

[3] Barber V.C., Evans E.M., Land M.F. 1967. The fine structure of the eye of the mollusk Pecten maximus. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 76, 3: 295–312.

[4] Barthelat F., Rim J.E., Espinosa H.D. 2009. A Review on the Structure and Mechanical Properties of Mollusk Shells. Perspectives on Synthetic Biomimetic Materials. [in:] B. Bhushan, H. Fuchs (eds.) Applied Scanning Probe Methods XIII, Biomimetics and Industrial Applications, 17–44, Springer.

[5] Bengtson S., Morris S.C. 1992. Early Radiation of Biomineralizing Phyla. [in:] J.H. Lipps, P.W. Signor (eds.) Origin and Early Evolution of the Metazoa, 447–481, Plenum Press, New York.

[6] Chauvaud L., Lorrain A., Dunbar R.B., Paulet Y.M., Thouzeau G., Jean F., Guarini J.M., Mucciarone D. 2005. Shell of the Great Scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes. Geochemistry Geophysics Geosystems, 6, 8, doi: 10.1029/2004GC000890.

[7] Chavan A. 1969. Lucinacea. [in:] Moore R.C. (ed.) Treatise on Invertebrate Paleontology, 491–517, New York.

[8] Cuif J.P., Dauphin Y. 1996. Occurrence of mineralization disturbances in nacreous layers of cultivated pearls produced by Pinctada margaritifera var. cumingi from French Polynesia. Comparison with reported shell alterations. Aquatic Living Resources, 9: 187–193.

[9] Dyduch-Falinowska A., Piechocki A. 1993. Muszla. [in:] A. Dyduch- Falinowska, A. Piechocki (eds.) Mięczaki (Mollusca) - Małże (Bivalvia), 29–33, Wydawnictwo Naukowe PWN, Warszawa.

[10] Espinosa H.D., Juster A.L., Latourte F.J., Loh O.Y., Gregoire D., Zavattieri P.D. 2010. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nature Communications, 2: 173, doi:10.1038/ncomms1172.

[11] Futuyma D.J. 2008. Koewolucja: rozwijanie interakcji międzygatunkowych. [in:] D.J. Futuyma (ed.) Ewolucja, 437–456, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa.

[12] Grefsrud E.S., Dauphin Y., Cuif J.P., Denis A., Strand Ø. 2008. Modifications in microstructure of cultured and wild scallop shells (Pecten maximus). Journal of shellfish research, 27, 4: 633–641.

[13] Harper E.M., Skelton P.W. 1993. The Marine Mesozoic Revolution and epifaunal bivalves. Scripta Geologica, special issue 2: 127–153.

[14] Hautmann M. 2004. Early Mesozoic evolution of alivincular bivalve ligaments and its implications for the timing of the “Mesozoic marine revolution”. Lethaia, 37: 165–172.

[15] Hautmann M. 2010. The first scallop. Paläontologische Zeitschrift, 84, 2: 317–322.

[16] Hayami I. 1991. Living and fossil scallop shells as airfoils: an experimental study. Paleobiology., 17: 1–18.

[17] Jackson D.J., McDougall C., Woodcroft B., Moase P., Rose R.A., Kube M., Reinhardt R., Rokhsar D.S., Montagnani C., Joubert C., Piquemal D., Degnan B.M. 2010. Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution, 27, 3: 591–608.

[18] Jura C. 2005. Gromada: Małże - Bivalvia. [in:] C. Jura (ed.) Bezkręgowce – Podstawy Morfologii Funkcjonalnej, Systematyki i Filogenezy, 673– 686, Wydawnictwo Naukowe PWN, Warszawa.

[19] Katti K.S., Katti D.R., Mohanty B. 2010. Biomimetic Lessons Learnt from Nacre. [in:] A. Mukherjee (ed.) Biomimetics Learning from Nature, 193-216, Tech Rijeka.

[20] Kosnik M.A., Alroy J., Behrensmeyer A.K., Fürsich F.T., Gastaldo R.A., Kidwell S.M., Kowalewski M., Plotnick R.M., Rogers R.R., Wagner P.J. 2011. Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers. Paleobiology, 37, 2: 303–331.

[21] Krebs C.J. 2011. Ewolucja i „wyścig zbrojeń”. [in:] C.J. Krebs (ed.) Ekologia - Eksperymentalna Analiza Rozmieszczenia i Liczebności, 27–28, Wydawnictwo Naukowe PWN, Warszawa.

[22] Meyers M.A., Chen P.Y., Lopez M.I., Seki Y., Lin A.Y.M. 2011. Biological materials: A materials science approach. Journal of the Mechanical Behavior of Biomedical Materials, 4, 5: 626–657.

[23] Meyers M.A., Yu-Min L.A., Chen P.Y., Muyco J. 2008. Mechanical strength of abalone nacre: Role of the soft organic layer. Journal of the Mechanical Behavior of Biomedical Materials, 1, 1: 75–85.

[24] Piechocki A. 2009. Gromada: Małże - Bivalvia. [in:] C. Błaszak (ed.) Zoologia – Bezkręgowce Tom I, 508–552, Wydawnictwo Naukowe PWN, Warszawa.

[25] Pokryszko B. 2009. Podtyp: Muszlowce - Conchifera. [in:] Błaszak C. (ed.) Zoologia - Bezkręgowce Tom I, 425–426, Wydawnictwo Naukowe PWN, Warszawa.

[26] Popov S.V. 1986. Composite prismatic structure in bivalve shell. Acta Palaeontologica Polonica, 31, 1–2: 3–28.

[27] Ragaini L., Di Celma C. 2009. Shell structure, taphonomy and mode of life of a Pleistocene ostreid from Ecuador. Bollettino della Società Paleontologica Italiana, 48, 2: 79–87.

[28] Raup D.M., Stanley S.M. 1984. Ekosystem morski. [in:] D.M. Raup, S.M. Stanley (ed.) Podstawy Paleontologii, 270–275, Państwowe Wydawnictwo Naukowe PWN, Warszawa.

[29] Salamon M.A., Niedźwiedzki R., Gorzelak P.,Lach R.,Surmik D. 2012. Bromalites from the Middle Triassic of Poland and the rise of the Mesozoic Marine Revolution. Palaeogeography, Palaeoclimatology, Palaeocology, 321-322: 142–150.

[30] Salinas C., Kisailus D. 2013. Fracture mitigation strategies in gastropod shells. JOM, 65, 4: 474–480.

[31] Tackett L.S., Bottjer D.J. 2012. Faunal succession of Norian (Late Triassic) level-bottom benthos in the Lombardian Basin: implications for the timing, rate, and nature of the Early Mesozoic Marine Revolution. PALAIOS, 27: 585–593.

[32] Taylor J.D., Kennedy W.J., Hall A. 1969. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea - Trigoniacea. Bulletin of the British Museum (Natural History). Zoology, Supplement, 3: 1–125.

[33] Urbański J. 1989. Gromada: Bivalvia (Lamellibranchiata, Acephala, Pelecypoda) - małże (blaszkoskrzelne). [in:] E. Grabda (ed.) Zoologia - Bezkręgowce Tom I Część trzecia, 805–851, Wydawnictwo Naukowe PWN, Warszawa.

[34] Vendrasco M.J., Porter S.M., Kouchinsky A.V., Li G., Fernandez C.Z. 2010. Shell microstructures in early Mollusks. The Festivus, XLII, 4: 43–54.

[35] Vermeij G.J. 1977. The Mesozoic marine revolution: Evidence from snails, predators and grazers. Paleobiology, 3: 245–258.

[36] Vermeij G.J. 1987. Evolution and Escalation. An Ecological History of Life, 1–527. Princeton University Press, Princeton.

[37] Yang W., Kashani N., Li X.W., Zhang G.P., Meyers M.A. 2011a. Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). Materials Science and Engineering: C, 31: 724–729.

[38] Yang W., Zhang G.P., Liu H., Li X.W. 2011b. Microstructural characterization and hardness behavior of a biological Saxidomus purpuratus Shell. Journal of Materials Science & Technology, 27, 2: 139–146.

[39] Yang W., Zhang G.P., Zhu X.F., Li X.W., Meyers M.A. 2011c. Structure and mechanical properties of Saxidomus purpuratus biological shells. Journal of the Mechanical Behavior of Biomedical Materials, 4: 1514– 1530.

Geoscience Records

an Interdisciplinary Journal of Earth Sciences

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 62 20
PDF Downloads 10 10 4