Open Access

Tree-Ring Response to Snow Cover and Reconstruction of Century annual Maximum Snow Depth for Northern Tianshan Mountains, China


Cite

Heavy snowfall and extreme snow depth cause serious losses of human life and property in the northern Tianshan Mountains almost every winter. Snow cover is an important indicator of climate change. In this study, we developed five tree-ring-width chronologies of Schrenk spruce (Picea schrenkiana Fisch. et Mey) from the northern Tianshan Mountains using standard dendrochronological methods. Correlation analyses indicated that radial growth of trees in the northern Tianshan Mountains is positively affected by annual maximum snow depth. This relationship was validated and models of annual maximum snow depth back to the 18th century were developed. The reconstruction explains 48.3% of the variance in the instrumental temperature records during the 1958/59–2003/04 calibration periods. It indicates that quasi-periodic changes exist on 2.0–4.0-yr, 5.3-yr, 14.0-yr, and 36.0-yr scales. The reconstructed series shows that maximum snow depth exhibits obvious stages change, the periods characterized by lower maximum snow depth were 1809/10–1840/41, 1873/74–1893/94, 1909/10–1929/30, 1964/65–1981/82, and the periods characterized by higher maximum snow depth were 1841/42–1872/73, 1894/95–1908/09, 1930/31–1963/64, and 1982/83–present. The lower period of annual maximum snow depth during the 1920s–1930s is consistent with the severe drought that occurred at this time in northern China. From the 1970s to the present, the maximum snow depth has increased clearly with the change to a warmer and wetter climate in Xinjiang. The reconstruction sheds new light on snow cover variability and change in a region where the climate history for the past several centuries is poorly understood.

eISSN:
1897-1695
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Geosciences, other