Estimating the number of components in an OSL decay curve using the Bayesian Information Criterion

Open access

Abstract

The optically stimulated luminescence (OSL) decay curve is assumed to consist of a number of first-order exponential components. Improper estimation of the number of components leads to under-or over-fitting of the curve under consideration. Hence, correct estimation of the number of components is important to accurately analyze an OSL decay curve. In this study, we investigated the possibility of using the Bayesian Information Criterion to estimate the optimal number of components in an OSL decay curve. We tested the reliability of this method using several hundred measured decay curves and three simulation scenarios. Our results demonstrate that the quality of the identification can be influenced by several factors: the measurement time and the number of channels; the variability of the decay constants; and the signal-to-noise ratios of a decaying component. The results also suggest that the Bayesian Information Criterion has great potential to estimate the number of components in an OSL decay curve with a moderate to high signal-to-noise ratio.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Adamiec G 2000. Variations in luminescence properties of single quartz grains and their consequences for equivalent dose estimation. Radiation Measurements 32(5–6): 427–432 DOI 10.1016/S1350-4487(00)00043-3. http://dx.doi.org/10.1016/S1350-4487(00)00043-3

  • [2] Adamiec G 2005. OSL decay curves-relationship between single- and multiple-grain aliquots. Radiation Measurements 39(1): 63–75 DOI 10.1016/j.radmeas.2004.03.007. http://dx.doi.org/10.1016/j.radmeas.2004.03.007

  • [3] Adamiec G Heer AJ and Bluszcz A 2012. Statistics of count numbers from a photomultiplier tube and its implications for error estimation. Radiation Measurements 47(9): 746–751 DOI 10.1016/j.radmeas.2011.12.009. http://dx.doi.org/10.1016/j.radmeas.2011.12.009

  • [4] Bluszcz A and Adamiec G 2006. Application of differential evolution to fitting OSL decay curves. Radiation Measurements 41(7–8): 886–891 DOI 10.1016/j.radmeas.2006.05.016. http://dx.doi.org/10.1016/j.radmeas.2006.05.016

  • [5] Duller GAT 2007. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL 25(1): 15–24.

  • [6] Duller GAT 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37(4): 589–612 DOI 10.1111/j.1502-3885.2008.00051.x. http://dx.doi.org/10.1111/j.1502-3885.2008.00051.x

  • [7] Duller GAT Bøtter-Jensen L and Murray AS 2000. Optical dating of single sand-sized grains of quartz: source of variability. Radiation Measurements 32(5–6): 453–457 DOI 10.1016/S1350-4487(00)00055-X. http://dx.doi.org/10.1016/S1350-4487(00)00055-X

  • [8] Fitzsimmons KE 2011. An assessment of the luminescence sensitivity of Australian quartz with respect to sediment history. Geochronometria 38(3): 199–208 DOI 10.2478/s13386-011-0030-9. http://dx.doi.org/10.2478/s13386-011-0030-9

  • [9] Galbraith RF 1988. Graphical display of estimates having differing standard errors. Technometrics 30(3): 271–281 DOI 10.2307/1270081. http://dx.doi.org/10.1080/00401706.1988.10488400

  • [10] Galbraith RF and Roberts RG 2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology 11: 1–27 DOI 10.1016/j.quageo.2012.04.020. http://dx.doi.org/10.1016/j.quageo.2012.04.020

  • [11] Galbraith RF Roberts RG Laslett GM Yoshida H and Olley JM 1999. Optical dating of single grains of quartz from Jinmium rock shelter northern Australia. Part I: experimental design and statistical models. Archaeometry 41(2): 339–364 DOI 10.1111/j.1475-4754.1999.tb00987.x. http://dx.doi.org/10.1111/j.1475-4754.1999.tb00987.x

  • [12] Jain M Murray AS and Bøtter-Jensen L 2003. Characterisation of blue-light stimulated luminescence components in different quartz samples: implications for dose measurement. Radiation Measurements 37(4–5): 441–449 DOI 10.1016/S1350-4487(03)00052-0. http://dx.doi.org/10.1016/S1350-4487(03)00052-0

  • [13] Li B 2007. A note on estimating the error when subtracting background counts from weak OSL signals. Ancient TL 25(1): 9–14.

  • [14] Li B and Li SH 2006a. Comparison of De estimates using the fast component and the medium component of quartz OSL. Radiation Measurements 41(2): 125–136 DOI 10.1016/j.radmeas.2005.06.037. http://dx.doi.org/10.1016/j.radmeas.2005.06.037

  • [15] Li SH and Li B 2006b. Dose measurement using the fast component of LM-OSL signals from quartz. Radiation Measurements 41(5): 534–541 DOI 10.1016/j.radmeas.2005.04.029. http://dx.doi.org/10.1016/j.radmeas.2005.04.029

  • [16] Peng J Dong ZB Han FQ Long H and Liu XJ 2013. R package nu-mOSL: numeric routines for optically stimulated luminescence dating. Ancient TL 31(2): 41–48. http://CRAN.R-project.org/package=numOSL.

  • [17] Peng J and Han FQ 2013. Selections of fast-component OSL signal using sediments from the south edge of Tengger Desert. Acta Geoscientica Sinica 34(6): 757–762 (in Chinese with English abstract).

  • [18] Rhodes EJ 2007. Quartz single grain OSL sensitivity distributions: implications for multiple grain single aliquot dating. Geochronometria 26: 19–29 DOI 10.2478/v10003-007-0002-5. http://dx.doi.org/10.2478/v10003-007-0002-5

  • [19] Schwarz G 1978. Estimating the dimension of a model. Annals of statistics 6(2): 461–464 DOI 10.1214/aos/1176344136. http://dx.doi.org/10.1214/aos/1176344136

  • [20] Singarayer JS and Bailey RM 2003. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements 37(4–5): 451–458 DOI 10.1016/S1350-4487(03)00062-3. http://dx.doi.org/10.1016/S1350-4487(03)00062-3

  • [21] Singarayer JS and Bailey RM 2004. Component-resolved bleaching spectra of quartz optically stimulated luminescence: preliminary results and implications for dating. Radiation Measurements 38(1): 111–118 DOI 10.1016/S1350-4487(03)00250-6. http://dx.doi.org/10.1016/S1350-4487(03)00250-6

  • [22] Sivia DS 1996. Data Analysis: a Bayesian Tutorial. Oxford University Press Oxford.

  • [23] Steffen D Preusser F and Schlunegger F 2009. OSL quartz age under-estimation due to unstable signal components. Quaternary Geo-chronology 4(5): 353–362 DOI 10.1016/j.quageo.2009.05.015.

  • [24] Storn R and Price K 1997. Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces. Journal of Global Optimization 11: 341–359. http://dx.doi.org/10.1023/A:1008202821328

  • [25] Tokuyasu K Tanaka K Tsukamoto S and Murray A 2010. The characteristics of OSL signal from quartz grains extracted from modern sediments in Japan. Geochronometria 37: 13–19 DOI 10.2478/v10003-010-0020-6. http://dx.doi.org/10.2478/v10003-010-0020-6

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.865
5-year IMPACT FACTOR: 1.623

CiteScore 2018: 1.12

SCImago Journal Rank (SJR) 2018: 0.584
Source Normalized Impact per Paper (SNIP) 2018: 0.514

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 356 254 3
PDF Downloads 138 105 1