Evaluating similarity of radial increments around tree stem circumference of European beech and Norway spruce from Central Europe

Open access


Extracting cores from a tree using an increment borer has been standard practice in dendrochronological studies for a long time. Although empirical rules exist regarding how many samples to take and which methodology to apply, comparatively few studies provide quantification of the similarity of relative tree-ring-widths (TRW) around the stem circumference. The aim of this study was therefore to precisely measure the similarity of standardised TRWs around the stem circumference and to provide objective suggestions for optimal core sampling of Norway spruce (Picea abies Karst. [L.]) and European beech (Fagus sylvatica L.) growing in Central European temperate forests.

A large sample of cross-sectional discs was used from Norway spruce and European beech trees growing on various slopes, at different altitudes and biogeographic regions across the Czech Republic and Slovakia. The similarity of TRWs measured in different coring directions was analysed by testing the relativized TRW around the trunk (rTRW). Comparison of rTRWs revealed no significant differences between coring directions, indicating that the relative increment was the same around the radius. The results also showed the high similarity between the rTRWs to be independent of both slope inclination and altitude. Moreover, the reconstruction of proportional tree diameters and basal areas backward in time from one core sample and one measurement of tree diameter (basal area) at the time of sample extraction is possible with reasonable precision.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Assmann E 1968. Náuka o výnose lesa (The principles of forest yield study). Príroda Bratislava. 488 pp (in Slovak).

  • [2] Bakker JD 2005. A new proportional method for reconstructing historical tree diameters. Canadian Journal of Forest Research 35(10): 2515–2520 DOI 10.1139/x05-136. http://dx.doi.org/10.1139/x05-136

  • [3] Bieker D and Rust S 2010a. Electric resistivity tomography shows radial variation of electrolytes in Quercus robur. Canadian Journal of Forest Research 40(6): 1189–1193 DOI 10.1139/X10-076. http://dx.doi.org/10.1139/X10-076

  • [4] Bieker D and Rust S 2010b. Non-destructive estimation of sapwood and heartwood width in Scots pine (Pinus sylvestris L.). Silva Fennica 44(2): 267–273. http://dx.doi.org/10.14214/sf.153

  • [5] Bigler Ch Gričar J Bugmann H and Čufar K 2004. Growth patterns as indicators of impending tree death in silver fir. Forest Ecology and Management 199(2–3): 183–190 DOI 10.1016/j.foreco.2004.04.019. http://dx.doi.org/10.1016/j.foreco.2004.04.019

  • [6] Bijak S 2010. Tree-ring chronology of Silver fir and its dependence on climate of the Kaszubskie lakeland (Northern Polan). Geochronometria 35(1): 91–94 DOI: 10.2478/v10003-010-0001-9.

  • [7] Biondi F 1992. Development of a tree-ring network for the Italian Peninsula. Tree Ring Bulletin 52: 15–29.

  • [8] Biondi F and Qeadan F 2008. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Research 64(2): 81–96. http://dx.doi.org/10.3959/2008-6.1

  • [9] Bošeľa M Kulla L and Marušák R 2011. Detrending ability of several regression equations in tree-ring research: a case study based on tree-ring data of Norway spruce (Picea abies [L.]). Journal of Forest Science 57(11): 491–499.

  • [10] Bošeľa M Petráš R Sitková Z Priwitzer T Pajtík J Hlavatá H Sedmák R and Tobin B 2014. Possible causes of the recent rapid increase in the radial increment of silver fir in the Western Carpathians. Environmental Pollution 184: 211–221 DOI 10.1016/j.envpol.2013.08.036. http://dx.doi.org/10.1016/j.envpol.2013.08.036

  • [11] Bouriaud O and Popa I 2009. Comparative dendroclimatic study of Scots pine Norway spruce and Silver fir in the Vrancea Moutains Eastern Carpathian Mountains. Trees 23: 95–106 DOI 10.1007/s00468-008-0258-z. http://dx.doi.org/10.1007/s00468-008-0258-z

  • [12] Bräker OU and Baumann E 2006. Growth reactions of sub-alpine Norway spruce (Picea abies (L.) Karst.) following one-sided light exposure (case study at Davos “Lusiwald”). Research report. Tree-ring Research 62(2): 67–73 DOI 10.3959/1536-1098-62.2.67. http://dx.doi.org/10.3959/1536-1098-62.2.67

  • [13] Brienen RJW and Zuidema PA 2005. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146(1): 1–12 DOI 10.1007/s00442-005-0160-y. http://dx.doi.org/10.1007/s00442-005-0160-y

  • [14] Brus DJ Hengeveld GM Walvoort DJJ Goedhart PW Heidema AH Nabuurs GJ and Gunia K 2012. Statistical mapping of tree species over Europe. European Journal of Forest Research 131(1): 145–157 DOI 10.1007/s10342-011-0513-5. http://dx.doi.org/10.1007/s10342-011-0513-5

  • [15] Büntgen U Frank DC Nievergelt D and Esper J 2006. Summer temperature variations in the European Alps A.D. 755–2004. Journal of Climate 19(21): 5606–5623 DOI 10.1175/JCLI3917.1. http://dx.doi.org/10.1175/JCLI3917.1

  • [16] Büntgen U Frank DC Kaczka RJ Verstege A Zwijacz-Kozica T and Esper J 2007. Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains Polan and Slovakia. Tree Physiology 27(5) 689–702 DOI 10.1093/treephys/27.5.689. http://dx.doi.org/10.1093/treephys/27.5.689

  • [17] Carrer M and Urbinati C 2006. Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytologist 170(4): 861–872 DOI 10.1111/j.1469-8137.2006.01703.x. http://dx.doi.org/10.1111/j.1469-8137.2006.01703.x

  • [18] Čejková A and Kolář T 2009. Extreme radial growth reaction of Norway spruce along an altitudinal gradient in the Šumava Mountains. Geochronometria 33: 41–47 DOI 10.2478/v10003-009-0012-6.

  • [19] Cook ER and Kairiukstis LA 1990. Methods of dendrochronology: Applications in the environmental sciences. Kluwer Academic Publishers and International Institute for Applied Systems Analysis Dordrecht Netherlands 394 pp. http://dx.doi.org/10.1007/978-94-015-7879-0

  • [20] Dittmar Ch Zech W and Elling W 2003. Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe-a dendroecological study. Forest Ecology and Management 173(1–3): 63–78 DOI 10.1016/S0378-1127(01)00816-7. http://dx.doi.org/10.1016/S0378-1127(01)00816-7

  • [21] Dittmar Ch Eißing T and Rothe A 2012. Elevation-specific tree-ring chronologies of Norway spruce and Silver fir in Southern Germany. Dendrochronologia 30(2): 73–83 DOI 10.1016/j.dendro.2011.01.013. http://dx.doi.org/10.1016/j.dendro.2011.01.013

  • [22] Ďurský J Škvarenina J Minďáš J and Miková A 2006. Regional analysis of climate change impact on Norway spruce (Picea abies L. Karst.) growth in Slovak mountain forests. Journal of Forest Science 52(7): 306–315.

  • [23] Esper J Frank DC Wilson RJS Büntgen U and Treydte K 2007. Uniform growth trends among central Asian low- and high-elevation juniper tree sites. Trees 21(2): 141–150 DOI 10.1007/s00468-006-0104-0. http://dx.doi.org/10.1007/s00468-006-0104-0

  • [24] Fang K Gou X Chen F Li J D’Arrigo R Cook E Yang T Liu W and Zhang F 2010. Tree growth and time-varying climate response along altitudinal transects in central China. European Journal of Forest Research 129(6): 1181–1189 DOI 10.1007/s10342-010-0408-x. http://dx.doi.org/10.1007/s10342-010-0408-x

  • [25] Feliksik E and Wilczyński S 2009. The effect of climate on tree-ring chronologies of native and nonnative tree species growing under homogeneous site conditions. Geochronometria 33: 49–57 DOI 10.2478/v10003-009-0006-4. http://dx.doi.org/10.2478/v10003-009-0006-4

  • [26] Fritts HC 1976. Tree rings and climate. Academic Press New York NY 576 pp.

  • [27] Fulé PZ Covington WW and Moore MM 1997. Determining reference conditions for ecosystems management in southwestern ponderosa pine forests. Ecological Applications 7(3): 895–908 DOI 10.1890/1051-0761(1997)007[0895:DRCFEM]2.0.CO;2. http://dx.doi.org/10.1890/1051-0761(1997)007[0895:DRCFEM]2.0.CO;2

  • [28] Giurgiu V 1957. Ob opredeleniji prirosta nasaždenij (On the estimation of forest growth). Lesnoje choziajstvo 9: 27–32 (in Russian).

  • [29] Giurgiu V 1967. Studiul cresterilor la arboreta (Study of the growth increment of forests). Bucuresti Editure Agro-Silvicǎ 322 pp. (in Romanian).

  • [30] Gray ST Fastie CL Jackson ST and Betancourt JL 2004. Tree-ring-based reconstruction of precipitation in the Bighorn Basin Wyoming since 1260 A.D.. Journal of Climate 17(19): 3855–3865 DOI 10.1175/1520-0442(2004)017〈3855:TROPIT〉2.0.CO;2. http://dx.doi.org/10.1175/1520-0442(2004)017<3855:TROPIT>2.0.CO;2

  • [31] Grissino-Mayer HD 2003. A Manual and Tutorial for the Proper Use of an Increment Borer. Tree-Ring Research 59(2): 63–79.

  • [32] Gutierrez E 1988. Dendroecological study of Fagus sylvatica L. In the Montseny Mountains (Spain). Acta Oecologica-Oecologia Plantarum 9: 301–309.

  • [33] Hasenauer H Nemani RR Schadauer K and Running SW 1999. Forest growth response to changing climate between 1961 and 1990 in Austria. Forest Ecology and Management 122(3): 209–219 DOI 10.1016/S0378-1127(99)00010-9. http://dx.doi.org/10.1016/S0378-1127(99)00010-9

  • [34] Hökkä H Salminen H and Ahti E 2012. Effect of temperature and precipitation on the annual diameter growth of Scots pine on drained peatlands and adjacent mineral soil sites in Finland. Dendrochronologia 30(2): 157–165 DOI 10.1016/j.dendro.2011.02.004. http://dx.doi.org/10.1016/j.dendro.2011.02.004

  • [35] Holmes R 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.

  • [36] Hughes MK Kelly PM Pilcher JR and Lamarche VC 1982. Climate from tree rings. Cambridge University Press New York 223 p. http://dx.doi.org/10.1017/CBO9780511760006

  • [37] Kaennel M and Schweingruber FH 1995. Multilingual Glossary of Dendrochronology. Terms and Definitions in English German French Spanish Italian Portuguese and Russian. Swiss Federal Institute for Forest Snow and Landscape Research Haupt Stuttgart.

  • [38] Koprowski M and Zielski A 2006. Dendrochronology of Norway spruce (Picea abies (L.) Karst.) from two range centres in lowland Poland. Trees 20: 383–390 DOI 10.1007/s00468-006-0051-9. http://dx.doi.org/10.1007/s00468-006-0051-9

  • [39] Kurth H 1959. Der gegenwärtige Stand der Zuwachsmessungen in der Forsteinrichtung der DDR (The state of the art of growth measurement in forest management in GDR). Allgemeine Forst- und Jagd-Zeitung 7: 301–304 (in German).

  • [40] LeBlanc DC 1990. Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountains New York. Canadian Journal of Forest Research 20(9): 1399–1407 DOI 10.1139/x90-185. http://dx.doi.org/10.1139/x90-185

  • [41] Liese W and Dadswell HF 1959. Über den Einfluß der Him-melsrichtung auf die Länge von Holzfäsern und Tracheiden (Influ-ence of shading on the length of wood fibers and tracheids). Holz als Roh- und Werkstoff 17: 421–427 (in German). http://dx.doi.org/10.1007/BF02605384

  • [42] Mäkinen H 1998. Effect of thinning and natural variations in bole roundness in Scots pine (Pinus silvestris L.). Forest Ecology and Management 107(1–3): 231–239 DOI 10.1016/S0378-1127(97)00335-6. http://dx.doi.org/10.1016/S0378-1127(97)00335-6

  • [43] Mäkinen H and Vanninen P 1999. Effect of sample selection on the environmental signal derived from tree-ring series. Forest Ecology and Management 113(1): 83–89 DOI 10.1016/S0378-1127(98)00416-2. http://dx.doi.org/10.1016/S0378-1127(98)00416-2

  • [44] McDowell N Phillips N Lunch C Bond BJ and Ryan MG 2002. An investigation of hydraulic limitation and compensation in large old Douglas-fir trees. Tree Physiology 22: 763–774 DOI 10.1093/treephys/22.11.763. http://dx.doi.org/10.1093/treephys/22.11.763

  • [45] Metsaranta JM and Lieffers VJ 2009. Using dendrochronology to obtain annual data for modelling stand development: a supplement to permanent sample plots. Forestry 82(2): 163–173 DOI 10.1093/forestry/cpn051. http://dx.doi.org/10.1093/forestry/cpn051

  • [46] Muzika RM Guyette RP Zielonka T and Liebhold AM 2004. The influence of O3 NO2 and SO2 on growth of Picea abies and Fagus sylvatica in the Carpathian Mountains. Environmental Pollution 130(1): 65–71 DOI 10.1016/j.envpol.2003.10.021. http://dx.doi.org/10.1016/j.envpol.2003.10.021

  • [47] Pilcher JR Schweingruber FH Kairiukstis L Shiyatov S Worbes M Kolischuk VG Vaganov EA Jagels R and Telewski FW 1990. Primary data in: Cook E.R. Kairiukstis L.A. (Eds.) Methods of dendrochronology: Applications in the environmental sciences. Kluwer Academic Publ. Dordrecht pp. 23–93. http://dx.doi.org/10.1007/978-94-015-7879-0_2

  • [48] Pretzsch H 2009. Forest dynamics growth and yield. From measurement to model. Springer Berlin Heidelberg.

  • [49] R Development Core Team 2011. R: A language and environment for statistical computing reference index version 2.13.0. R Foundation for Statistical Computing Vienna Austria. ISBN 3-900051-07-0 available at: http://www.R-project.org.

  • [50] Rozas V 2003. Tree age estimates in Fagus sylvatica and Quercus robur: testing previous and improved methods. Plant Ecology 167(2): 193–212 DOI 10.1023/A:1023969822044. http://dx.doi.org/10.1023/A:1023969822044

  • [51] Schweingruber FH 1996. Tree rings and environment. Dendroecology. Berne Paul Haupt Publishers.

  • [52] Schweingruber FH 2007. Wood structure and environment. Springer-Verlag Berlin Heidelberg New York 279 pp.

  • [53] Siostrzonek E 1958. Radialzuwachs und flächenzuwachs. (Radial increment and basal-area increment). Forstwissenschaftliches Centralblatt 77: 237–254 (in German). http://dx.doi.org/10.1007/BF01821397

  • [54] Speer JH Orvis KH Grissino-Mayer HD Kennedy LM and Horn SP 2004. Assessing the dendrochronological potential of Pinus occidentalis Swartz in the Cordillera Central of the Dominican Republic. The Holocene 14(4): 563–569 DOI 10.1191/0959683604hl732rp. http://dx.doi.org/10.1191/0959683604hl732rp

  • [55] Stephenson NL 2000. Estimated ages of some large giant sequoias: General Sherman keeps getting younger. Mandroño 47(1): 61–67.

  • [56] Šmelko Š 1965. Základy určovania hrúbkového prírastku stromov a porastov (Basis for the estimation of the radial increment of trees and stands). SAV Bratislava 176 pp (in Slovak).

  • [57] Šmelko Š 1982. Biometrické zákonitosti rastu a prírastku lesných stromov a porastov (Biometric principles of growth and increment of trees and stands). VEDA Bratislava 184 pp (in Slovak).

  • [58] Taylor AM Gartner BL and Morrell JJ 2002. Heartwood formation and natural durability — A review. Wood and Fiber Science 34(4): 587–611.

  • [59] Tognetti R Cherubini P and Innes JL 2000. Comparative stem growth rates of Mediterranean trees under background and naturally en-hanced ambient CO2 concentrations. New Phytologist 146(1): 59–74 DOI 10.1046/j.1469-8137.2000.00620.x. http://dx.doi.org/10.1046/j.1469-8137.2000.00620.x

  • [60] Tröltzsch K Van Brusselen J and Schuck A 2009. Spatial occurence of major tree species groups in Europe derived from multiple data sources. Forest Ecology and Management 257(1): 294–302 DOI 10.1016/j.foreco.2008.09.012. http://dx.doi.org/10.1016/j.foreco.2008.09.012

  • [61] Van Der Maaten-Theunissen M Kahle HP and Van Der Maaten E 2013. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Annals of Forest Science 70(2): 185–193 DOI 10.1007/s13595-012-0241-0. http://dx.doi.org/10.1007/s13595-012-0241-0

  • [62] Vyskot M (ed.) 1971. Základy růstu a produkce lesů. Státní Zemědelské Nakladatelství (The principles of forest growth and production). Praha. 440 pp (in Czech).

  • [63] Weber P Bugmann H Fonti P and Rigling A 2008. Using a retrospective dynamic competition index to reconstruct forest succession. Forest Ecology and Management 254(1): 96–106 DOI 10.1016/j.foreco.2007.07.031. http://dx.doi.org/10.1016/j.foreco.2007.07.031

  • [64] Wigley TML Briffa KR and Jones PD 1984. On the average of correlated time series with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23(2): 201–213 DOI 10.1175/1520-0450(1984)023〈0201:OTAVOC〉2.0.CO;2. http://dx.doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

  • [65] Woodall CW 2008. When is one core per tree sufficient to characterize stand attributes? Results of a Pinus ponderosa case study. Research report. Tree-Ring Research 64(1): 55–60 DOI 10.3959/2007-10.1. http://dx.doi.org/10.3959/2007-10.1

  • [66] Young-In P and Spiecker H 2005. Variations in the tree-ring structure of Norway spruce (Picea abies) under contrasting climates. Dendrochronologia 23(2): 93–104 DOI 10.1016/j.dendro.2005.09.002. http://dx.doi.org/10.1016/j.dendro.2005.09.002

Journal information
Impact Factor

IMPACT FACTOR 2018: 0.865
5-year IMPACT FACTOR: 1.623

CiteScore 2018: 1.12

SCImago Journal Rank (SJR) 2018: 0.584
Source Normalized Impact per Paper (SNIP) 2018: 0.514

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 302 174 2
PDF Downloads 103 60 2