Evaluating similarity of radial increments around tree stem circumference of European beech and Norway spruce from Central Europe

Michal Bošeľa, Róbert Sedmák, Róbert Marušák 1 , Denisa Sedmáková 3 , Rudolf Petráš 4 , and Milan Barna 3
  • 1 Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Kamycka 1176, 165 21, Prague 6, Czech Republic
  • 2 Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, 960 53, Zvolen, Slovakia
  • 3 Institute of Forest Ecology, Slovak Academy of Sciences, Ľudovíta Štúra 2, 960 53, Zvolen, Slovakia
  • 4 National Forest Centre, T.G. Masaryka 22, 96092, Zvolen, Slovakia

Abstract

Extracting cores from a tree using an increment borer has been standard practice in dendrochronological studies for a long time. Although empirical rules exist regarding how many samples to take and which methodology to apply, comparatively few studies provide quantification of the similarity of relative tree-ring-widths (TRW) around the stem circumference. The aim of this study was therefore to precisely measure the similarity of standardised TRWs around the stem circumference and to provide objective suggestions for optimal core sampling of Norway spruce (Picea abies Karst. [L.]) and European beech (Fagus sylvatica L.) growing in Central European temperate forests.

A large sample of cross-sectional discs was used from Norway spruce and European beech trees growing on various slopes, at different altitudes and biogeographic regions across the Czech Republic and Slovakia. The similarity of TRWs measured in different coring directions was analysed by testing the relativized TRW around the trunk (rTRW). Comparison of rTRWs revealed no significant differences between coring directions, indicating that the relative increment was the same around the radius. The results also showed the high similarity between the rTRWs to be independent of both slope inclination and altitude. Moreover, the reconstruction of proportional tree diameters and basal areas backward in time from one core sample and one measurement of tree diameter (basal area) at the time of sample extraction is possible with reasonable precision.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Assmann E, 1968. Náuka o výnose lesa (The principles of forest yield study). Príroda, Bratislava. 488 pp (in Slovak).

  • [2] Bakker JD, 2005. A new, proportional method for reconstructing historical tree diameters. Canadian Journal of Forest Research 35(10): 2515–2520, DOI 10.1139/x05-136. http://dx.doi.org/10.1139/x05-136

  • [3] Bieker D and Rust S, 2010a. Electric resistivity tomography shows radial variation of electrolytes in Quercus robur. Canadian Journal of Forest Research 40(6): 1189–1193, DOI 10.1139/X10-076. http://dx.doi.org/10.1139/X10-076

  • [4] Bieker D and Rust S, 2010b. Non-destructive estimation of sapwood and heartwood width in Scots pine (Pinus sylvestris L.). Silva Fennica 44(2): 267–273. http://dx.doi.org/10.14214/sf.153

  • [5] Bigler Ch, Gričar J, Bugmann H and Čufar K, 2004. Growth patterns as indicators of impending tree death in silver fir. Forest Ecology and Management 199(2–3): 183–190, DOI 10.1016/j.foreco.2004.04.019. http://dx.doi.org/10.1016/j.foreco.2004.04.019

  • [6] Bijak S, 2010. Tree-ring chronology of Silver fir and its dependence on climate of the Kaszubskie lakeland (Northern Polan). Geochronometria 35(1): 91–94, DOI: 10.2478/v10003-010-0001-9.

  • [7] Biondi F, 1992. Development of a tree-ring network for the Italian Peninsula. Tree Ring Bulletin 52: 15–29.

  • [8] Biondi F and Qeadan F, 2008. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree-Ring Research 64(2): 81–96. http://dx.doi.org/10.3959/2008-6.1

  • [9] Bošeľa M, Kulla L and Marušák R, 2011. Detrending ability of several regression equations in tree-ring research: a case study based on tree-ring data of Norway spruce (Picea abies [L.]). Journal of Forest Science 57(11): 491–499.

  • [10] Bošeľa M, Petráš R, Sitková Z, Priwitzer T, Pajtík J, Hlavatá H, Sedmák R and Tobin B, 2014. Possible causes of the recent rapid increase in the radial increment of silver fir in the Western Carpathians. Environmental Pollution 184: 211–221, DOI 10.1016/j.envpol.2013.08.036. http://dx.doi.org/10.1016/j.envpol.2013.08.036

  • [11] Bouriaud O and Popa I, 2009. Comparative dendroclimatic study of Scots pine, Norway spruce, and Silver fir in the Vrancea Moutains, Eastern Carpathian Mountains. Trees 23: 95–106, DOI 10.1007/s00468-008-0258-z. http://dx.doi.org/10.1007/s00468-008-0258-z

  • [12] Bräker OU and Baumann E, 2006. Growth reactions of sub-alpine Norway spruce (Picea abies (L.) Karst.) following one-sided light exposure (case study at Davos “Lusiwald”). Research report. Tree-ring Research 62(2): 67–73, DOI 10.3959/1536-1098-62.2.67. http://dx.doi.org/10.3959/1536-1098-62.2.67

  • [13] Brienen RJW and Zuidema PA, 2005. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146(1): 1–12, DOI 10.1007/s00442-005-0160-y. http://dx.doi.org/10.1007/s00442-005-0160-y

  • [14] Brus DJ, Hengeveld GM, Walvoort DJJ, Goedhart PW, Heidema AH, Nabuurs GJ and Gunia K, 2012. Statistical mapping of tree species over Europe. European Journal of Forest Research 131(1): 145–157, DOI 10.1007/s10342-011-0513-5. http://dx.doi.org/10.1007/s10342-011-0513-5

  • [15] Büntgen U, Frank DC, Nievergelt D and Esper J, 2006. Summer temperature variations in the European Alps, A.D. 755–2004. Journal of Climate 19(21): 5606–5623, DOI 10.1175/JCLI3917.1. http://dx.doi.org/10.1175/JCLI3917.1

  • [16] Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T and Esper J, 2007. Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Polan and Slovakia. Tree Physiology 27(5) 689–702, DOI 10.1093/treephys/27.5.689. http://dx.doi.org/10.1093/treephys/27.5.689

  • [17] Carrer M and Urbinati C, 2006. Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytologist 170(4): 861–872, DOI 10.1111/j.1469-8137.2006.01703.x. http://dx.doi.org/10.1111/j.1469-8137.2006.01703.x

  • [18] Čejková A and Kolář T, 2009. Extreme radial growth reaction of Norway spruce along an altitudinal gradient in the Šumava Mountains. Geochronometria 33: 41–47, DOI 10.2478/v10003-009-0012-6.

  • [19] Cook ER and Kairiukstis LA, 1990. Methods of dendrochronology: Applications in the environmental sciences. Kluwer Academic Publishers and International Institute for Applied Systems Analysis, Dordrecht, Netherlands, 394 pp. http://dx.doi.org/10.1007/978-94-015-7879-0

  • [20] Dittmar Ch, Zech W and Elling W, 2003. Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe-a dendroecological study. Forest Ecology and Management 173(1–3): 63–78, DOI 10.1016/S0378-1127(01)00816-7. http://dx.doi.org/10.1016/S0378-1127(01)00816-7

  • [21] Dittmar Ch, Eißing T and Rothe A, 2012. Elevation-specific tree-ring chronologies of Norway spruce and Silver fir in Southern Germany. Dendrochronologia 30(2): 73–83, DOI 10.1016/j.dendro.2011.01.013. http://dx.doi.org/10.1016/j.dendro.2011.01.013

  • [22] Ďurský J, Škvarenina J, Minďáš J and Miková A, 2006. Regional analysis of climate change impact on Norway spruce (Picea abies L. Karst.) growth in Slovak mountain forests. Journal of Forest Science 52(7): 306–315.

  • [23] Esper J, Frank DC, Wilson RJS, Büntgen U and Treydte K, 2007. Uniform growth trends among central Asian low- and high-elevation juniper tree sites. Trees 21(2): 141–150, DOI 10.1007/s00468-006-0104-0. http://dx.doi.org/10.1007/s00468-006-0104-0

  • [24] Fang K, Gou X, Chen F, Li J, D’Arrigo R, Cook E, Yang T, Liu W and Zhang F, 2010. Tree growth and time-varying climate response along altitudinal transects in central China. European Journal of Forest Research 129(6): 1181–1189, DOI 10.1007/s10342-010-0408-x. http://dx.doi.org/10.1007/s10342-010-0408-x

  • [25] Feliksik E and Wilczyński S, 2009. The effect of climate on tree-ring chronologies of native and nonnative tree species growing under homogeneous site conditions. Geochronometria 33: 49–57, DOI 10.2478/v10003-009-0006-4. http://dx.doi.org/10.2478/v10003-009-0006-4

  • [26] Fritts HC, 1976. Tree rings and climate. Academic Press, New York, NY, 576 pp.

  • [27] Fulé PZ, Covington WW and Moore MM, 1997. Determining reference conditions for ecosystems management in southwestern ponderosa pine forests. Ecological Applications 7(3): 895–908, DOI 10.1890/1051-0761(1997)007[0895:DRCFEM]2.0.CO;2. http://dx.doi.org/10.1890/1051-0761(1997)007[0895:DRCFEM]2.0.CO;2

  • [28] Giurgiu V, 1957. Ob opredeleniji prirosta nasaždenij (On the estimation of forest growth). Lesnoje choziajstvo 9: 27–32 (in Russian).

  • [29] Giurgiu V, 1967. Studiul cresterilor la arboreta (Study of the growth increment of forests). Bucuresti, Editure Agro-Silvicǎ, 322 pp. (in Romanian).

  • [30] Gray ST, Fastie CL, Jackson ST and Betancourt JL, 2004. Tree-ring-based reconstruction of precipitation in the Bighorn Basin, Wyoming, since 1260 A.D.. Journal of Climate 17(19): 3855–3865, DOI 10.1175/1520-0442(2004)017〈3855:TROPIT〉2.0.CO;2. http://dx.doi.org/10.1175/1520-0442(2004)017<3855:TROPIT>2.0.CO;2

  • [31] Grissino-Mayer HD, 2003. A Manual and Tutorial for the Proper Use of an Increment Borer. Tree-Ring Research 59(2): 63–79.

  • [32] Gutierrez E, 1988. Dendroecological study of Fagus sylvatica L. In the Montseny Mountains (Spain). Acta Oecologica-Oecologia Plantarum 9: 301–309.

  • [33] Hasenauer H, Nemani RR, Schadauer K and Running SW, 1999. Forest growth response to changing climate between 1961 and 1990 in Austria. Forest Ecology and Management 122(3): 209–219, DOI 10.1016/S0378-1127(99)00010-9. http://dx.doi.org/10.1016/S0378-1127(99)00010-9

  • [34] Hökkä H, Salminen H and Ahti E, 2012. Effect of temperature and precipitation on the annual diameter growth of Scots pine on drained peatlands and adjacent mineral soil sites in Finland. Dendrochronologia 30(2): 157–165, DOI 10.1016/j.dendro.2011.02.004. http://dx.doi.org/10.1016/j.dendro.2011.02.004

  • [35] Holmes R, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.

  • [36] Hughes MK, Kelly PM, Pilcher JR and Lamarche VC, 1982. Climate from tree rings. Cambridge University Press, New York, 223 p. http://dx.doi.org/10.1017/CBO9780511760006

  • [37] Kaennel M and Schweingruber FH, 1995. Multilingual Glossary of Dendrochronology. Terms and Definitions in English, German, French, Spanish, Italian, Portuguese and Russian. Swiss Federal Institute for Forest, Snow and Landscape Research, Haupt, Stuttgart.

  • [38] Koprowski M and Zielski A, 2006. Dendrochronology of Norway spruce (Picea abies (L.) Karst.) from two range centres in lowland Poland. Trees 20: 383–390, DOI 10.1007/s00468-006-0051-9. http://dx.doi.org/10.1007/s00468-006-0051-9

  • [39] Kurth H, 1959. Der gegenwärtige Stand der Zuwachsmessungen in der Forsteinrichtung der DDR (The state of the art of growth measurement in forest management in GDR). Allgemeine Forst- und Jagd-Zeitung 7: 301–304 (in German).

  • [40] LeBlanc DC, 1990. Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountains, New York. Canadian Journal of Forest Research 20(9): 1399–1407, DOI 10.1139/x90-185. http://dx.doi.org/10.1139/x90-185

  • [41] Liese W and Dadswell HF, 1959. Über den Einfluß der Him-melsrichtung auf die Länge von Holzfäsern und Tracheiden (Influ-ence of shading on the length of wood fibers and tracheids). Holz als Roh- und Werkstoff 17: 421–427 (in German). http://dx.doi.org/10.1007/BF02605384

  • [42] Mäkinen H, 1998. Effect of thinning and natural variations in bole roundness in Scots pine (Pinus silvestris L.). Forest Ecology and Management 107(1–3): 231–239, DOI 10.1016/S0378-1127(97)00335-6. http://dx.doi.org/10.1016/S0378-1127(97)00335-6

  • [43] Mäkinen H and Vanninen P, 1999. Effect of sample selection on the environmental signal derived from tree-ring series. Forest Ecology and Management 113(1): 83–89, DOI 10.1016/S0378-1127(98)00416-2. http://dx.doi.org/10.1016/S0378-1127(98)00416-2

  • [44] McDowell N, Phillips N, Lunch C, Bond BJ and Ryan MG, 2002. An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees. Tree Physiology 22: 763–774, DOI 10.1093/treephys/22.11.763. http://dx.doi.org/10.1093/treephys/22.11.763

  • [45] Metsaranta JM and Lieffers VJ, 2009. Using dendrochronology to obtain annual data for modelling stand development: a supplement to permanent sample plots. Forestry 82(2): 163–173, DOI 10.1093/forestry/cpn051. http://dx.doi.org/10.1093/forestry/cpn051

  • [46] Muzika RM, Guyette RP, Zielonka T and Liebhold AM, 2004. The influence of O3, NO2 and SO2 on growth of Picea abies and Fagus sylvatica in the Carpathian Mountains. Environmental Pollution 130(1): 65–71, DOI 10.1016/j.envpol.2003.10.021. http://dx.doi.org/10.1016/j.envpol.2003.10.021

  • [47] Pilcher JR, Schweingruber FH, Kairiukstis L, Shiyatov S, Worbes M, Kolischuk VG, Vaganov EA, Jagels R and Telewski FW, 1990. Primary data, in: Cook, E.R., Kairiukstis, L.A. (Eds.), Methods of dendrochronology: Applications in the environmental sciences. Kluwer Academic Publ., Dordrecht, pp. 23–93. http://dx.doi.org/10.1007/978-94-015-7879-0_2

  • [48] Pretzsch H, 2009. Forest dynamics, growth and yield. From measurement to model. Springer, Berlin, Heidelberg.

  • [49] R Development Core Team, 2011. R: A language and environment for statistical computing, reference index version 2.13.0. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, available at: http://www.R-project.org.

  • [50] Rozas V, 2003. Tree age estimates in Fagus sylvatica and Quercus robur: testing previous and improved methods. Plant Ecology 167(2): 193–212, DOI 10.1023/A:1023969822044. http://dx.doi.org/10.1023/A:1023969822044

  • [51] Schweingruber FH, 1996. Tree rings and environment. Dendroecology. Berne, Paul Haupt Publishers.

  • [52] Schweingruber FH, 2007. Wood structure and environment. Springer-Verlag, Berlin, Heidelberg, New York, 279 pp.

  • [53] Siostrzonek E, 1958. Radialzuwachs und flächenzuwachs. (Radial increment and basal-area increment). Forstwissenschaftliches Centralblatt 77: 237–254 (in German). http://dx.doi.org/10.1007/BF01821397

  • [54] Speer JH, Orvis KH, Grissino-Mayer HD, Kennedy LM and Horn SP, 2004. Assessing the dendrochronological potential of Pinus occidentalis Swartz in the Cordillera Central of the Dominican Republic. The Holocene 14(4): 563–569, DOI 10.1191/0959683604hl732rp. http://dx.doi.org/10.1191/0959683604hl732rp

  • [55] Stephenson NL, 2000. Estimated ages of some large giant sequoias: General Sherman keeps getting younger. Mandroño 47(1): 61–67.

  • [56] Šmelko Š, 1965. Základy určovania hrúbkového prírastku stromov a porastov (Basis for the estimation of the radial increment of trees and stands). SAV, Bratislava, 176 pp (in Slovak).

  • [57] Šmelko Š, 1982. Biometrické zákonitosti rastu a prírastku lesných stromov a porastov (Biometric principles of growth and increment of trees and stands). VEDA, Bratislava, 184 pp (in Slovak).

  • [58] Taylor AM, Gartner BL and Morrell JJ, 2002. Heartwood formation and natural durability — A review. Wood and Fiber Science 34(4): 587–611.

  • [59] Tognetti R, Cherubini P and Innes JL, 2000. Comparative stem growth rates of Mediterranean trees under background and naturally en-hanced ambient CO2 concentrations. New Phytologist 146(1): 59–74, DOI 10.1046/j.1469-8137.2000.00620.x. http://dx.doi.org/10.1046/j.1469-8137.2000.00620.x

  • [60] Tröltzsch K, Van Brusselen J and Schuck A, 2009. Spatial occurence of major tree species groups in Europe derived from multiple data sources. Forest Ecology and Management 257(1): 294–302, DOI 10.1016/j.foreco.2008.09.012. http://dx.doi.org/10.1016/j.foreco.2008.09.012

  • [61] Van Der Maaten-Theunissen M, Kahle HP and Van Der Maaten E, 2013. Drought sensitivity of Norway spruce is higher than that of silver fir along an altitudinal gradient in southwestern Germany. Annals of Forest Science 70(2): 185–193, DOI 10.1007/s13595-012-0241-0. http://dx.doi.org/10.1007/s13595-012-0241-0

  • [62] Vyskot M, (ed.), 1971. Základy růstu a produkce lesů. Státní Zemědelské Nakladatelství (The principles of forest growth and production). Praha. 440 pp (in Czech).

  • [63] Weber P, Bugmann H, Fonti P and Rigling A, 2008. Using a retrospective dynamic competition index to reconstruct forest succession. Forest Ecology and Management 254(1): 96–106, DOI 10.1016/j.foreco.2007.07.031. http://dx.doi.org/10.1016/j.foreco.2007.07.031

  • [64] Wigley TML, Briffa KR and Jones PD, 1984. On the average of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23(2): 201–213, DOI 10.1175/1520-0450(1984)023〈0201:OTAVOC〉2.0.CO;2. http://dx.doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

  • [65] Woodall CW, 2008. When is one core per tree sufficient to characterize stand attributes? Results of a Pinus ponderosa case study. Research report. Tree-Ring Research 64(1): 55–60, DOI 10.3959/2007-10.1. http://dx.doi.org/10.3959/2007-10.1

  • [66] Young-In P and Spiecker H, 2005. Variations in the tree-ring structure of Norway spruce (Picea abies) under contrasting climates. Dendrochronologia 23(2): 93–104, DOI 10.1016/j.dendro.2005.09.002. http://dx.doi.org/10.1016/j.dendro.2005.09.002

OPEN ACCESS

Journal + Issues

Search