Thermoluminescence as a technique for determining the nature and history of small solar system particles

Open access

Abstract

The thermoluminescence phenomenon has been used for pottery dating and radiation dosimetry for sixty years and for forty years has been applied to the study of meteorites, being successful in quantifying metamorphic histories and providing new insights into terrestrial age and orbits. Here we review some of the fundamental properties of thermoluminescence with particular focus on the study of small extraterrestrial particles. We suggest that natural TL data can be used to identify the burial and release history of cometary particles and that induced TL measurements can provide in-sights into the mineralogy of particles (even when largely amorphous) and the metamorphic history of those particles. We illustrate the use of TL to study small particles by describing recent studies on micrometeorites and 10–100 μm fragments taken from the matrix of a meteorite Semarkona which is type 3.0 ordinary chondrite.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Aitken MJ 1974. Physics and archaeology. Interscience Publishers: 181pp.

  • [2] Armstrong JT and Wasserburg GJ 1981. The Allende Pink Angel: its Mineralogy Petrology and the Constraints of its Genesis. Lunar and Planetary Science XII 25–27.

  • [3] Benoit PH and Sears DWG 1994. A recent meteorite fall in Antarctic with an unusual orbital history. Earth and Planetary Science Letters 120(3–4): 463–471 DOI 10.1016/0012-821X(93)90257-A.

  • [4] Benoit PH Roth J Sears H and Sears DWG 1994. The natural thermoluminescence of meteorites 7: Ordinary chondrites from the Elephant Moraine region Antarctica. Journal of Geophysical Research — Planets 99(E1): 2073–2085 DOI 10.1029/93JE02474. http://dx.doi.org/10.1029/93JE02474

  • [5] Bradley JP Brownlee DE and Keller LP 1994. Reflectance Spectroscopy of Individual Interplanetary Dust Particles Lunar and Planetary Science Conference XXV Abstract # 159.

  • [6] Bradley JP Keller LP Brownlee DE and Thomas KL 1996. Reflectance spectroscopy of interplanetary dust particles. Meteoritics & Planetary Science 31: 394–402.

  • [7] Bradley JP Snow T Brownlee DE Keller LP Flynn GJ and Miller M 1998. Optical Mineralogical and Trace Element Properties of GEMS: Evaluating the Interstellar Connection Lunar and Planetary Science XXIX Abstract # 1737.

  • [8] Bradley JP Keller LP Gezo J Snow T Flynn GJ Brownlee DE and Bowey J 1999. The 10 and 18 Micrometer Silicate Features of GEMS: Comparison with Astronomical Silicates Lunar and Planetary Science XXX Abstract # 1835.

  • [9] Brownlee DE Joswiak DJ and Bradley JP 1999. High Spatial Resolution Analyses of GEMS and Other Ultrafine Grained IDP Components. Lunar and Planetary Science XXX Abstract # 2031.

  • [10] Brownlee D and 182 others 2006. Comet 81P/Wild 2 Under a Microscope. Science 314(5806): 1711–1716 DOI 10.1126/science.1135840. http://dx.doi.org/10.1126/science.1135840

  • [11] Brownlee DE Joswiak D Bradley J and Matrajt G 2007. The Origin of Crystalline Silicates in Comets and Large Scale Mixing in the Solar Nebula. Lunar and Planetary Science XXXVIII Abstract # 2189.

  • [12] Campins H 1999. Interstellar Signatures in Cometary Solids. Lunar and Planetary Science XXX Abstract # 1542.

  • [13] Chi M Ishii H Toppani A Browning ND and Bradley JP 2007. Does Comet Wild-2 Contain GEMS? Lunar and Planetary Science XXXVIII Abstract # 2010.

  • [14] Christoffersen R and Keller L 2006. Space Plasma Ion Processing of IDP Sulfides: A Comparison to Silicates Based on In-Situ TEM Ion Irradiation Experiments. Lunar and Planetary Science XXXVII Abstract #1738.

  • [15] Cody GD Yabuta H Alexander CMO’D Araki T and Kilcoyne ALD 2007. Placing Comet 81P/Wild 2 Organic Particles into Context with Chondritic Organic Solids. Lunar and Planetary Science XXXVIII Abstract # 2286.

  • [16] Colangeli L Bossoletti E and Schwehm G 1992. Physical models of comet nuclei A review. In: Hunt J and Guyenne TD eds. Physical Mechanics of Comet Materials. European Space Agency special publication 302: 17–22.

  • [17] Craig JP and Sears DWG 2009. The fine-grained matrix of the Semarkona LL3.0 ordinary chondrite: An induced thermoluminescence study. Meteoritics & Planetary Science 44(5) 643–652 DOI 10.1111/j.1945-5100.2009.tb00760.x. http://dx.doi.org/10.1111/j.1945-5100.2009.tb00760.x

  • [18] Brownlee DE 1987. Morphological Chemical and Mineralogical Studies of Cosmic Dust [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A Mathematical and Physical Sciences 323(1572): 305–311 DOI 10.1098/rsta.1987.0087.

  • [19] Flynn GJ and 79 others 2006. Elemental Compositions of Comet 81P/Wild 2 Samples Collected by Stardust. Science 314(5806): 1731–1735 DOI 10.1126/science.1136141. http://dx.doi.org/10.1126/science.1136141

  • [20] Garlick GFJ 1949. Luminescent Materials. Clarendon Press: 271pp.

  • [21] Geake JE Walker G Telfer DJ Mills AA and Garlick GFJ 1973. Luminescence of lunar terrestrial and synthesized plagioclase caused by Mn2+ and Fe3+. Proceedings of the Lunar Science Conference 4 3181.

  • [22] Guimon RK Keck BD and Sears DWG 1985. Chemical and physical studies of type 3 chondrites — IV: Annealing studies of a type 3.4 ordinary chondrite and the metamorphic history of meteorites. Geochimica et Cosmochimica Acta 19: 1515–1524. http://dx.doi.org/10.1016/0016-7037(85)90256-X

  • [23] Haq M Hasan FA and Sears DWG 1988. Thermoluminescence and the shock and reheating history of meteorites — IV: The induced TL properties of type 4–6 ordinary chondrites. Geochimica et Cosmochimica Acta 52: 1679–1689. http://dx.doi.org/10.1016/0016-7037(88)90236-0

  • [24] Hartmetz CP Ostertag R and Sears DWG 1986. A thermoluminescence study of experimentally shock-loaded oligoclase and bytownite. Journal of Geophysical Research 91: E263–E274 DOI 10.1029/JB091iB13p0E263. http://dx.doi.org/10.1029/JB091iB13p0E263

  • [25] Hasan FA Haq M and Sears DWG 1987. The natural thermoluminescence levels in meteorites I. 23 meteorites of known Al-26 content. Journal of Geophysical Research 92: E703–E709 DOI 10.1029/JB092iB04p0E703. http://dx.doi.org/10.1029/JB092iB04p0E703

  • [26] Hörz F and 43 others 2006. Impact Features on Stardust: Implications for Comet 81P/Wild 2 Dust. Science 314(5806): 1716–1719 DOI 10.1126/science.1135705. http://dx.doi.org/10.1126/science.1135705

  • [27] Hoyt HP Jr. Walker RM Zimmerman DW Zimmerman J 1972. Thermoluminescence of individual grains and bulk samples of lunar fines. Proceedings of the Lunar Science Conference 2: 2997.

  • [28] Jessberger EK Christoforidis A and Kissel J 1988. Aspects of the Major Element Composition of Halley’s Dust. Nature 332: 691–695 DOI 10.1038/332691a0. http://dx.doi.org/10.1038/332691a0

  • [29] Joswiak DJ and Brownlee DE 1998. Atmospheric Entry Melting in 5–15 Micrometer Hydrous IDPs: Evidence from Analytical TEM Studies and Pulse-Heating Experiments. Lunar and Planetary Science XXIX Abstract # 1929.

  • [30] Joswiak DJ and Brownlee DE 2006. Non-GEMS Silicate Glasses in Chondritic Porous Interplanetary Dust Particles Lunar and Planetary Science Conference XXXVII Abstract # 2190.

  • [31] Joswiak DJ Matrajt G. Brownlee DE Westphal AJ and Snead CJ 2007. A Roedderite-bearing Terminal Particle from Stardust Track 56: Comparison with Rare Peralkaline Chondrules in Ordinary Chondrites. Lunar and Planetary Science XXXVIII Abstract # 2142.

  • [32] Keller HU Kramm R and Thomas N 1988. Surface features on the nucleus of Comet Halley. Nature 331 227–231 DOI 10.1038/331227a0. http://dx.doi.org/10.1038/331227a0

  • [33] Keller LP and 32 others 2006. Infrared Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust. Science 314(5806): 1728–1731 DOI 10.1126/science.1135796. http://dx.doi.org/10.1126/science.1135796

  • [34] Lisse CM VanCleve J Adams AC A’Hearn MF Fernández YR Farn-ham TL Armus L Grillmair CJ Ingalls J Belton MJS Groussin O McFadden LA Meech KJ Schultz PH Clark BC Feaga LM Sunshine JM 2006. Spitzer Spectral Observations of the Deep Impact Ejecta. Science 313(5787): 635–640 DOI 10.1126/science.1124694. http://dx.doi.org/10.1126/science.1124694

  • [35] McKeegan KD and 46 others 2006. Isotopic Compositions of Cometary Matter Returned by Stardust. Science 314(5806): 1724–1728 DOI 10.1126/science.1135992. http://dx.doi.org/10.1126/science.1135992

  • [36] McKeever SWS 1988. Thermoluminescence of Solids. Cambridge University Press: 390 pp.

  • [37] Meech KJ Ageorges N A’Hearn MF Arpigny C Ates A Aycock J Bagnulo S Bailey J Barber R Barrera L and 199 coauthors 2005. Deep Impact: Observations from a Worldwide Earth-Based Campaign. Science 310: 265–269 DOI 10.1126/science.1118978. http://dx.doi.org/10.1126/science.1118978

  • [38] Meeker GP 1995. Formation of CAIs by Partial Melting and Accretion During Heating in a Gas of Solar Composition. Lunar and Planetary Science XXIV: 947–948.

  • [39] Meeker GP Wasserburg GJ and Armstrong JT 1983. Replacement textures in CAI and implications regarding planetary metamorphism. Geochimica et Cosmochimica Acta 47: 707–721. http://dx.doi.org/10.1016/0016-7037(83)90105-9

  • [40] Ninagawa K Soyama K Ota M Toyoda S Imae N Kojima H Benoit PH and Sears DWG 2000. Thermoluminescence studies of ordinary chondrites in the Japanese Antarctic meteorite collection II: New measurements for thirty type 3 ordinary chondrites. Antarctic Meteorite Research 13: 112–120.

  • [41] Palma RL Pepin RO Schlutter D and Simones J 2007. Helium and Neon Isotopic Compositions from Stardust Aerogel Particle Tracks Lunar and Planetary Science XXXVIII Abstract # 2032.

  • [42] Papanastassiou DA Brigham CA and Wasserburg GJ 1984. Search for MG Isotopic Signatures in Allende. Lunar and Planetary Science XV 629–630.

  • [43] Rickman H 1991. The thermal history and structure of cometary nuclei. In: Comets in the post-Halley era. 2 733–760.

  • [44] Rietmeijer FJM 2007. Challenges to Understand Aerogel Contaminated by Hypervelocity-impacted. Lunar and Planetary Science XXXVIII Abstract # 1082.

  • [45] Sandford SA and 54 others 2006. Organics Captured from Comet 81P/Wild 2 by the Stardust Spacecraft. Science 314(5806): 1720–1724 DOI 10.1126/science.1135841. http://dx.doi.org/10.1126/science.1135841

  • [46] Schramm LS Brownlee DE and Wheelock MM 1989. Major element composition of stratospheric micrometeorites. Meteoritics 24: 99–112.

  • [47] Schultz PH Eberhardy CA Ernst CM A’Hearn MF Sunshine JM and Lisse CM 2007. The Deep Impact oblique impact cratering experiment. Icarus 190(2) 295–333 DOI 10.1016/j.icarus.2007.06.006. http://dx.doi.org/10.1016/j.icarus.2007.06.006

  • [48] Sears DW 1975. Temperature gradients in meteorites produced by heating during atmospheric passage. Modern Geology 5: 155–164.

  • [49] Sears DWG and Hasan FA 1986. Thermoluminescence and Antarctic meteorites. In: Annexstad JO Schultz L and Wanke H eds. Proc. 2nd Workshop on Antarctic Meteorites LPI Technical Rept. 86-01. Lunar and Planetary Institute Houston: 83–100.

  • [50] Sears DWG and Hasan FA 1987. Type 3 ordinary chondrites: A review. Surveys in Geophysics 9(1): 43–97 DOI 10.1007/BF01903400. http://dx.doi.org/10.1007/BF01903400

  • [51] Sears DW Grossman JN Melcher CL Ross LM and Mills AA 1980. Measuring the metamorphic history of unequilibrated ordinary chondrites. Nature 287: 791–795 DOI 10.1038/287791a0. http://dx.doi.org/10.1038/287791a0

  • [52] Sears DWG Symes SP Guimon RK and Benoit PH 1995. Chemical and physical studies of type 3 chondrites XII: The metamorphic history of CV chondrites and their components. Meteoritics 30: 707–714.

  • [53] Sears DWG Kochan H and Huebner WF 1999. Simulation experiments and surface processes on comets. Meteoritics and Planetary Science 34(4): 497–525 DOI 10.1111/j.1945-5100.1999.tb01360.x. http://dx.doi.org/10.1111/j.1945-5100.1999.tb01360.x

  • [54] Sedaghatpour F and Sears DWG 2009. Characterization of Antarctic micrometeorites by thermoluminescence. Meteoritics & Planetary Science 44(5) 653–664 DOI 10.1111/j.1945-5100.2009.tb00761.x. http://dx.doi.org/10.1111/j.1945-5100.2009.tb00761.x

  • [55] Singhvi AK Pal S and Bhandari N 1982. Ablation Characteristics of Meteorites Based on Thermoluminescence and Track Studies. PACT 6: 404–410.

  • [56] Space Studies Board 2000. Preventing the Forward Contamination of Europa 2 Europa. In National Research Council. A Science Strategy for the Exploration of Europa National Academy Press Washington D.C. 1999. Updated 6/29/00.

  • [57] Stephan T Flynn GJ Sandford SA Zolensky ME 2007. TOF-SIMS Analysis of Comet Wild 2 Particles Extracted from Stardust Aerogel. 38th Lunar and Planetary Science Conference (Lunar and Planetary Science XXXVIII) held March 12–16 in League City Texas. LPI Contribution No. 1338 p.1126

  • [58] Stoeffler D and Düeren H 1992. Cometary analogue material — Types tests and results. Annales Geophysicae 10 206–216.

  • [59] Thomas KL Blanford GE Keller LP Klock W and McKay DS 1993. Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta 53: 1551–1556. http://dx.doi.org/10.1016/0016-7037(93)90012-L

  • [60] Whipple FL 1951. A Comet Model. II. Physical Relations for Comets and Meteors. Astrophysical Journal 113 464–474. http://dx.doi.org/10.1086/145416

  • [61] Zolensky ME Pieters C Clark B and Papike JJ 2000. Invited Review Small is beautiful: The analysis of nanogramsized astromaterials. Meteoritics and Planetary Science 35(1): 9–29 DOI 10.1111/j.1945-5100.2000.tb01970.x. http://dx.doi.org/10.1111/j.1945-5100.2000.tb01970.x

  • [62] Zolensky ME and 74 others 2006. Mineralogy and petrology of Comet 81P/Wild 2 nucleus samples. Science 314(5806): 1735–1739 DOI 10.1126/science.1135842. http://dx.doi.org/10.1126/science.1135842

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 0.865
5-year IMPACT FACTOR: 1.623

CiteScore 2018: 1.12

SCImago Journal Rank (SJR) 2018: 0.584
Source Normalized Impact per Paper (SNIP) 2018: 0.514

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 55 2
PDF Downloads 63 36 0