Seeking realistic upper-bounds for internal reliability of systems with uncorrelated observations

Open access

Abstract

From the theory of reliability it follows that the greater the observational redundancy in a network, the higher is its level of internal reliability. However, taking into account physical nature of the measurement process one may notice that the planned additional observations may increase the number of potential gross errors in a network, not raising the internal reliability to the theoretically expected degree. Hence, it is necessary to set realistic limits for a sufficient number of observations in a network. An attempt to provide principles for finding such limits is undertaken in the present paper. An empirically obtained formula (Adamczewski 2003) called there the law of gross errors, determining the chances that a certain number of gross errors may occur in a network, was taken as a starting point in the analysis. With the aid of an auxiliary formula derived on the basis of the Gaussian law, the Adamczewski formula was modified to become an explicit function of the number of observations in a network. This made it possible to construct tools necessary for the analysis and finally, to formulate the guidelines for determining the upper-bounds for internal reliability indices. Since the Adamczewski formula was obtained for classical networks, the guidelines should be considered as an introductory proposal requiring verification with reference to modern measuring techniques.

Adamczewski, Z. (2003). Prawo błędów grubych [The law of gross errors - in Polish], Przegląd Geodezyjmy (Geodetic Review), No. 4:3-5.

Baarda, W. (1968). A testing procedure for use in geodetic networks, Publications on Geodesy, New Series, vol.2, no.5, Netherlands Geodetic Commission, Delft.

Knight, N. L., Wang J. & Rizos C. (2010). Generalized measures of reliability for multiple outliers, J Geod., 84, 625-635.

Prószyński, W. (1997): Measuring the robustness potential of the least squares estimation: geodetic illustration, J Geod., 71, 65-659.

Prószyński, W. & Kwaśniak M. (2002). Niezawodność sieci geodezyjnych [Reliability of geodetic networks - inPolish], Publishing House of the Warsaw University of Technology, Warsaw.

Geodesy and Cartography

The Journal of Committee on Geodesy of Polish Academy of Sciences

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 136 136 18
PDF Downloads 37 37 11