A priori noise and regularization in least squares collocation of gravity anomalies

Open access

Abstract

The paper describes the estimation of covariance parameters in least squares collocation (LSC) by the cross-validation (CV) technique called leave-one-out (LOO). Two parameters of Gauss-Markov third order model (GM3) are estimated together with a priori noise standard deviation, which contributes significantly to the covariance matrix composed of the signal and noise. Numerical tests are performed using large set of Bouguer gravity anomalies located in the central part of the U.S. Around 103 000 gravity stations are available in the selected area. This dataset, together with regular grids generated from EGM2008 geopotential model, give an opportunity to work with various spatial resolutions of the data and heterogeneous variances of the signal and noise. This plays a crucial role in the numerical investigations, because the spatial resolution of the gravity data determines the number of gravity details that we may observe and model. This establishes a relation between the spatial resolution of the data and the resolution of the gravity field model. This relation is inspected in the article and compared to the regularization problem occurring frequently in data modeling.

Andersen, O.B. & Knudsen, P. (1998). Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J. Geophys. Res., 103 (C4), 8129-8137.

Arabelos, D. & Tscherning C. C. (1998). The Use of Least Suqares Collocation Method in Global Gravity Field Modeling, Phys. Chem. Earth, 23 (1), 1-12.

Arabelos, D., & Tscherning C.C. (1999). Gravity field recovery from airborne gravity gradiometer data using collocation and taking into account correlated errors, Phys. Chem. Earth, (A) 24 (1), 19-25.

Arabelos, D., & Tscherning C. C. (2003). Globally covering a-priori regional gravity covariance models, Adv. Geosci., 1, 143-147, DOI:10.5194/adgeo-1-143-2003.

Arlot, S. & Celisse A., 2010. A survey of cross-validation procedures for model selection. Stat. Surv., 4, 40-79, DOI: 10.1214/09-SS054.

Darbeheshti, N., & Featherstone W.E. (2009). Non-stationary covariance function modelling in 2D leastsquares collocation. J Geod., 83(6), 495-508. DOI:10.1007/s00190-008-0267-0.

Eshagh, M. & Sjöberg L E. (2011). Determination of gravity anomaly at sea level from inversion of satellite gravity gradiometric data. Journal of Geodynamics, 51, 366-377.

Forsberg, R. (1987). A new covariance model for inertial gravimetry and gradiometry, J. Geophys. Res., 92(B2), 1305-1310.

Forsberg, R. (1984). Local covariance functions and density distributions. Report No. 356, Department of Geodetic Science and Surveying, The Ohio State University, Columbus.

Golub, G. A., & Van Loan C. F., 1989, Matrix Computations: 2nd Ed., John Hopkins University Press, Baltimore.

Hildenbrand, T. G., Briesacher A., Flanagan G., Hinze W. J., Hittelman A. M., Keller G. R., Kucks R. P., Plouff D., Roest W., Seeley J., Smith D. A., & Webring, M. (2002). Rationale and Operational Plan to Upgrade the U.S. Gravity Database: U.S. Geological Survey Open-File Report 02-463, 12 p.

Hofmann-Wellenhof, B. & Moritz H. (2005). Physical Geodesy, Springer, New York.

Jekeli, C. & Garcia R. (2002). Local geoid determination with in situ geopotential data obtained from satellite-to-satellite tracking data, in: Sideris, M.G. (ed.), Gravity, Geoid and Geodynamics 2000, Springer, Berlin, 123-128.

Kavzoglu, T. & Saka M. H. (2005). Modeling local GPS/levelling geoid undulations using artificial neural networks. J. Geod., 78, 520-527. DOI 10.1007/s00190-004-0420-3.

Koch, K. R, & Kusche J. (2002). Regularization of geopotential determination from satellite data by variance components. J Geod., 76, 259-268.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence. Montreal, Canada, 2, 1137-1143.

Kotsakis, C. (2007). Acovariance-adaptive approach for regularized inversion in linear models. Geophys. J. Int., 171, 509-522.

Kryński, J., & Łyszkowicz A. (2006). Fitting gravimetric quasigeoid model to GPS/levelling data in Poland, IAG Proceedings from 1st International Symposium of the International Gravity Field Service (IGFS), 28 August - l September 2006, Istanbul, Turkey.

Kusche, J., & Klees R. (2002). Regularization of gravity field estimation from satellite gravity gradients. J Geod., 76, 359-368.

Marchenko, A., Tartachynska Z., Yakimovich A., & Zablotskyj F. (2003). Gravity anomalies and geoid heights derived from ERS-1,ERS-2, and Topex/Poseidon altimetry in the Antarctic peninsula area, Proceedings of the 5th International Antarctic Geodesy Symposium AGS’03, September 15-17, Lviv, Ukraine, SCAR Report No. 23, http://www.scar.org/publications/reports/23/

Moreaux, G. (2008). Compactly supported radial covariance functions, J Geod., 82, 431-443, DOI 10.1007/s00190-007-0195-4.

Moritz, H., 1980. Advanced Physical Geodesy, Herbert Wichmann Verlag, Karlsruhe.

Osada, E., Kryński J. & Owczarek M. (2005). A robust method of quasigeoid modelling in Poland based on GPS/levelling data with support of gravity data, Geodesy and Cartography, 54 (3), 99-117.

Pail, R., Reguzzoni M., Sansò F., Kühtreiber N. (2010). On the combination of global and local data in collocation theory. Studia Geophys Geod., Vol. 54, N. 2, 195-218.

Pavlis, N. K., Holmes S. A., Kenyon S. C., & Factor J. F. (2012). The development and evaluation of Earth Gravitational Model (EGM2008), J. Geophys. Res., 117, B04406, DOI:10.1029/2011JB008916.

Rao, C. R., & Toutenburg H. (1995). Linear Models: Least Squares and Alternatives. New York: Springer-Verlag, pp. 352.

Rummel, R., Schwarz K. P., & Gerstl M. (1979). Least squares collocation and regularization. Bull. Geod., 53, 343-361.

Sadiq, M., Tscherning C.C., & Ahmad Z. (2010). Regional gravity field model in Pakistan area from the combination of CHAMP, GRACE and ground data Using least squares collocation: A case study. Adv. Space Res. 46, 1466-1476.

Sansó, F., Venuti G. & Tscherning C.C. (1999). A theorem of insensitivity of the collocation solution to variations of the metric of the interpolation space. In Schwarz, K.P. (Ed.), Geodesy Beyond 2000. The Challenges of the First Decade, International Association of Geodesy Symposia 121, 233-240, Springer, Berlin.

Schwarz, K. P. (1984). Data types and their spectral properties, in: Schwarz (ed.) Local gravity field approximation, Beijing International Summer School.

Smith, D. A., & Milbert D. G. (1999). The GEOID96 high-resolution geoid height model for the United States. J Geod., 73 (5), 219-236.

Strykowski, G. (2000). Silkeborg Gravity High Revisited: Horizontal Extension of the Source and its Uniqueness. Phys. Chem. Earth (A), 25 (4), 375-380.

Trojanowicz, M. (2012). Local quasigeoid modelling using gravity data inversion technique - analysis of fixed coefficients of density model weighting matrix, Acta Geodyn. Geomater., 9(3)(167), 269-281.

Xu, P. (2009). Iterative generalized cross-validation for fusing heteroscedastic data of inverse ill-posed problems. Geophys. J. Int., 179, 182-200.

Xu, P., & Rummel R. (1994). A simulation study of smoothness methods in recovery of regional gravity fields. Geophys. J. Int., 117, 472-486.

Geodesy and Cartography

The Journal of Committee on Geodesy of Polish Academy of Sciences

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 62 20
PDF Downloads 10 10 1